
RELOC RELOADED: TECHNICAL APPENDIX

DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Contents

1. Linearizability of stack with helping 1
1.1. Offers 2
1.2. Stack implementation 2
1.3. Specification stack 3
1.4. Specification for the offers 4
1.5. Verifying the refinement 5
References 9

1. Linearizability of stack with helping

As we have mentioned in the main body of the paper, the rules of ReLoC are not complete, and it particular
data structures that use helping cannot be handled in ReLoC completely. However, by temporarily breaking
the ReLoC abstraction, we can still verify such examples.

In this section we prove that a concurrent stack with helping refines a coarse-grained concurrent stack.
For verifying this example we need to unfold the definition of relational judgment and work inside the model.
Luckily, we do not have to give up on reasoning with ReLoC rules completely. Rather, we can still use ReLoC
rules for carrying out a part of the proof. The goal of this section is to demonstrate that even for proofs
that cannot be completed without breaking the ReLoC abstract we can still keep the compositionality of the
overall proof, by isolating and encapsulating the bits that require breaking the abstraction, and providing
suitable specifications for those bits.

The main theorem that we show in this section is the linearisability proof of a concurrent stack data struc-
ture. It is a fine-grained concurrent stack, in which two threads doing push and pop operations concurrently
can synchronize and exchange data without touching the stack itself. Whenever a thread tries to push an
element x on top of the stack, it first offers x. If there is a concurrent thread doing a pop operation, then it
can help the first thread by taking up its offer. If no thread takes up the offer before it is withdrawn, then
the element x is put on top of the stack (in a thread-safe way). The data structure is taken from the Iris
lecture notes, where the authors give stacks with helping a bag-like specification in [BB20, Chapter 8]. It is
a simplified version of the elimination-backoff stack from [HSY04], where the backoff array is of size 1.

We wish to verify that a stack with helping refines a coarse-grained stack, which uses a sequential stack
and locks to guarantee mutual exclusion. We start be describing the data structure used for managing offers
(Section 1.1) and the implementation of stack with helping (Section 1.2). We then present the coarse-grained
stack which we use as a specification (Section 1.3) and the associated rules. Finally, we give the specification

Date: June 24, 2020.

1

2 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

for offers (Section 1.4), which we prove by breaking the ReLoC abstraction, and use that specification to
prove that stack with helping refines the coarse-grained stack (Section 1.5).

1.1. Offers. In order to facilitate helping, we use an abstraction of offers, which are that can be created, to
store a specific value; accepted; or revoked:

∃offer.


mk offer : α→ offer

revoke offer : offer→ α option

accept offer : offer→ α option


The option type is defined as τ option , τ+unit, and its constructors are Some(e) , inl(e) and None , inr(()).

If an offer was already accepted or revoked, then revoke offer and accept offer return None; otherwise
those functions return the value associated with an offer. We implement an offer as a pair of a value and a
reference, on which we synchronize the state of the offer:

mk offer v = (v, ref(0))

revoke offer (v, `) = if CAS(`, 0, 2) then Some(v) else None

accept offer (v, `) = if CAS(`, 0, 1) then Some(v) else None

An offer can be in three states: initially offered (0), accepted (1) and revoked (2). For our purposes the only
thread that can revoke an offer is the one that put it up in the first place.

1.2. Stack implementation. The implementation of the stack with helping is given in Figure 1. The stack
with helping with use a single location mb for managing the offers, which we call a mailbox. This mailbox is
a part of the internal state of the stack. The other internal state is the stack contents itself, represented in
memory as a linked list in the location r.

The internal representation of stack contents can be described as the following mutually recursive data
type:

node = Λα.(ref (α× stack α)) option

stack = Λα.ref (node α)

or in OCaml notation:

type α node = (α× α stack) ref option

and α stack = α node ref

In words: a stack is a reference to a node; a node is either None (representing the end of the stack), or a
Some(p) for a reference p that contains a pair (hd , tail) where hd is a element of the stack and tail is a stack.

Initially, the stack r is empty, and the mailbox mb is unset – both point to None.
The push operation initially does not modify the internal contents of the stack, but first creates a new

offeroff , which is shared with other threads through the mailbox location mb. Immediately after sharing off ,
the offer is revoked. If revoke offer off returns None, then some other thread has happened to accept the
offer in-between the two operations. In that case the push operation simply terminates. If revoke offer off
returns Some(v) then no other thread has managed to accept the offer and off was successfully revoked. In
that case the actual push happens on the underlying stack r.

The pop operation similarly uses the side channel mb: it first checks if there is an offer in the mailbox.
If no offer is present, it resorts to popping an element off the stack r. Otherwise, it tries to accept the offer
with accept offer off . That operation can fail as well, in which case it resorts to calling pop no offer again.

RELOC RELOADED: TECHNICAL APPENDIX 3

mk stack() = let r = ref(None) in

let mb = ref(None) in

(λ(). pop r mb, λx. push r mb x)

push r mb v = let off = mk offer v in

mb ← Some(off);

match revoke offer off with

| None→ ()

| Some(v)→ let tail = ! r in

let hd = Some(ref(v, tail)) in

if CAS(r, tail , hd)

then ()

else push r mb v

pop no offer r mb = match ! r with

| None→ None

| Some(pth)→ let (hd , tail) = ! pth in

if CAS(r,Some(pth), tail)

then Some(hd)

else pop r mb

pop r mb = match ! mb with

| None→ pop no offer r mb

| Some(off)→ match accept offer off with

| None→ pop no offer r mb

| Some(v)→ Some(v)

Figure 1. Stack with helping

The helper function pop no offer can itself fail (due to racing) – in that case the whole pop operation is
restarted.

1.3. Specification stack. In order to verify the linearizability of stack with helping, we prove that it
refines a coarse-grained stack, which implementation and symbolic execution rules are given in Figure 2.
The internal state of the stack is a simple reference r to a list guarded by a lock lk . The reference r stores
the stack value of a recursive type µα. unit + τ ×α of lists with elements of the type τ . We have the standard
constructors cons and nil.

There are standard symbolic execution rules for the right-hand side operate on an abstract predicate
isStack(rs, ~v) where ~v is a finite list of values. The variable rs will by convention denote a pair of (r, lk); we
use it in the specification without exposing the fact that the internal state of the stack is a pair of a location
and a lock. This suggests that we do not need to stick to the exact coarse-grained stack implementation,
rather we can work with any stack module that satisfies the specifications given in Figure 2.

4 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

mk stacks () = let r = ref(nil) in

let lk = newlock () in

(λ(). pops r lk , λx. pushs r lk x)

pushs (r, lk) x = acquire lk ;

r ← cons(x, ! r);

release lk

pops (r, lk) = acquire lk ;

let v = match unfold ! r with

| inl(())→ None

| inr(hd , tl)→ r ← tl ;Some(hd)

in release lk ; v

cg-push-r
isStack(rs, ~v) (isStack(rs, x~v) −∗ |=E e - K[()] : τ)

|=E e - K[pushs rsx] : τ

cg-pop-suc-r
isStack(rs, w~v) (isStack(rs, ~v) −∗ |=E e - K[Some(w)] : τ)

|=E e - K[pops rs] : τ

cg-pop-fail-r
isStack(rs, ε) (isStack(rs, ε) −∗ |=E e - K[None] : τ)

|=E e - K[pops rs] : τ

Figure 2. Coarse-grained stack and its specification

We would like to show the following refinement:

|= mk stack - mk stacks : ∀τ. (unit→ τ option)× (τ → unit).

Showing this refinement boils down to coming up with an invariant stackInv(ri,mb, rs) and refinements

stackInv(ri,mb, rs)
ST N ∗ JτK(v1, v2) −∗ |= push ri mb v1 - pushs rs v2 : unit

stackInv(ri,mb, rs)
ST N −∗ |= pop ri mb - pops rs : τ option

For the later refinement we use an auxiliary conditional refinement:

stackInv(ri,mb, rs)
ST N ∗ (|= pop ri mb - pops rs : τ option)

−∗ |= pop no offer ri mb - pops rs : τ option

The idea is that we prove the pop refinement using Löb induction. In case the mailbox is empty or we
cannot accept the offer for some other reason, we resort to calling pop no offer . However, pop no offer
can fail itself, in which case it calls the pop function again. For that reason we have the refinement |=
pop ri mb - pops rs : τ option as an assumption.

In the next subsections we will see how to define the stack invariant stackInv(ri,mb, rs), but before that
we need to describe the specifications and the logical theory that we use for offers.

1.4. Specification for the offers. The specification for the offers can be constructed by considering the
life cycle of an offer. The internal state of the offer is 0. A thread put ups an offer and associates with it some
resource P . The thread that creates the offer also forges a token offer tokenγ ; only a thread in possession

RELOC RELOADED: TECHNICAL APPENDIX 5

of this token can revoke an offer, transitioning it to internal state 2. This token is also used for getting the
resources out of the offer: by revoking an offer a thread exchanges the token back for the resource P .

Alternatively, any thread can try to accept an offer, by changing the internal state to 1. This thread may
take the resource P and put up some other resource Q in exchange.

Finally, a thread that has originally created the offer is able to see that the offer has been accepted and
the resource P is taken, but a new resource Q is present. The original thread can then exchange the token
offer tokenγ for Q. This suggests the following logical description of an offer:

is offerγ(`, P,Q) , ∃c. ` 7→i c ∗
(
c = 0 ∗ P
∨ c = 1 ∗ (Q ∨ offer tokenγ)

∨ c = 2 ∗ offer tokenγ
)

where ` is the second component of the offer value.
Using is offerγ(`, P,Q) and offer tokenγ we can verify the following specifications for offer functions:

mk-offer-l
∀γ `. (∀P Q. P −∗ is offerγ(`, P,Q)) ∗ offer tokenγ −∗ |= K[(v, `)] - t : τ

|= K[mk offer v] - t : τ

accept-offer-l

|V> E
. is offerγ(`, P,Q) ∗ .

(
(is offerγ(`, P,Q) −∗ |=E K[None] - t : τ)

∧(P ∗ (Q −∗ is offerγ(`, P,Q)) −∗ |=E K[Some(v)] - t : τ)
)

|= K[accept offer (v, `)] - t : τ

The specification for revoke offer is more complicated and specialized for our use case: helping. It is
also the only specification for which we have to open the “escape hatch” and unfold the definition of the
refinement propositions. But before we divert out attention to that, we should get comfortable with the two
specifications given above. Looking at mk-offer-l we see that we can always symbolically execute mk offer ,
after which we get two additional premises: (∀P Q. P −∗ is offerγ(`, P,Q)) and offer tokenγ . Notice that this
specification is written partially in an “inside out” style: instead of demanding a resource P upfront for
symbolically executing mk offer , the rule instead provides the user with an opportunity to turn their P into
an is offerγ(`, P,Q) at a later point at user’s convenience.

The symbolic execution rule for accept offer is also partially “inside out”, but it is also written in a logically
atomic style. The user symbolically executing accept offer needs to provide is offerγ(`, P,Q), potentially after
opening an invariant. After which they need to prove two goals:

is offerγ(`, P,Q) −∗ |=E K[None] - t : τ

accounting for a failure to accept the offer, and

P ∗ (Q −∗ is offerγ(`, P,Q)) −∗ |=E K[Some(v)] - t : τ

accounting for a succesfull acceptance of the offer. Notice the second case the rule does not demand the user
to immediately produce the resource Q (in exchange for the resources P already stored in the offer). Rather,
the rule takes the resource is offerγ(`, P,Q) as a hostage, willing to exchange it for Q.

1.5. Verifying the refinement. Clearly, the “inside out” rules are stronger than rules in the normal style.
Let us demonstrate why do we need such rules by going through the proofs of the refinements.

First, we need to describe the stack invariant stackInv(ri,mb, rs). The invariant must support two goals:
linking together the two internal representations of the stack (the coarse grained stack uses a value of type
µα. unit + τ × α, while the stack with helping uses a linked list in the memory as τ stack); and accounting
for offers and helping.

6 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Predicates:

offerRegγ : (Loc fin−⇀Val×GName× N× ECtx)→ iProp

inOfferRegγ : Loc→ (Val×GName× N× ECtx)→ iProp

Rules:

new-offerreg

|V∃γ′. offerRegγ′(∅)

offerreg-alloc
N(`) = ⊥ offerRegγ′(N)

|VofferRegγ′(N [`←(v, γ, j,K)]) ∗ inOfferRegγ′(`, v, γ, j,K)

offerreg-lookup
offerRegγ′(N) ∗ inOfferRegγ′(`, v, γ, j,K)

offerRegγ′(N) ∗N(`) = (v, γ, j,K)

inofferreg-persistent
inOfferRegγ′(`, v, γ, j,K)

� inOfferRegγ′(`, v, γ, j,K)

Defined predicates:

offerInv(N) , ∗
` 7→(v,γ,j,K)∈N

is offerγ(`, j Z⇒K[pushs rs v], j Z⇒K[()])

Figure 3. Offer registry ghost theory.

We have already seen the predicate isStack(rs, ~v) that describes the contents of coarse-grained stack. In
order to link it with the fine-grained representation of stack with helping, we first recursively define the
predicate is stacki(ri, ~w), which describes the contents of the stack ri in the heap; then we link the two
contents together with a predicate stacklink:

is stacki(ri, ~w) = ∃h. ri 7→i h ∗ is stack′i(h, ~w)

is stack′i(None, ε) = True

is stack′i(Some(`), w ~w′) = ∃t q. ` 7−→i (w, t) ∗ is stack′i(t, ~w
′)

is stack′i(x, y) = False otherwise

stacklink(ri, rs) = ∃~v ~w. is stacki(ri, ~w) ∗ isStack(rs, ~v)∗

(|~v| = |~w|) ∗ ∗
0≤i<|~v|

JτK(wi, vi)

To account for the offers and helping we use an offer registry : a map that associates each offer location
` to a value v associated with the offer, as well as the id and the continuation of a thread that potentially
emulates the helping operation. The offer registry ghost theory keeps track of this map, ensuring that it is
growing monotonically. The predicates and rules for the registry are displayed in Figure 3.

For an offer registry N we have a corresponding invariant offerInv(N), which actually accumulates the
is offerγ(−,−,−) resources. The idea is that whenever a thread accepts an offer that is in the registry it
gets the resource j Z⇒K[pushs rs v] (as per the symbolic execution rule for the offers). Then it is the job
of this thread to perform helping by symbolically executing pushs rs v in the ghost thread pool, leaving the
finished thread j Z⇒K[()] in the offer. Conversely, a thread that puts up an offer also offers a corresponding
j Z⇒K[pushs rs v] that can be executed by the work-stealing thread. Let us see how this idea is used in the
proof of the pop refinement.

First, we write down the full invariant:

RELOC RELOADED: TECHNICAL APPENDIX 7

stackInv(ri,mb, rs) , ∃N pv. isLocks(lk , false) ∗ ri 7→i p ∗ rs 7→s v ∗ stacklink(p, v) ∗
offerRegγ′(N) ∗ offerInv(N)(
mb 7→i None ∨ (∃` v1 v2 γ j K.mb 7→i Some(v1, `) ∗

JτK(v1, v2) ∗N(`) = (v2, γ, j,K))
)

The pop refinement that we want to prove is the following:

(1) stackInv(ri,mb, rs)
ST N −∗ |= pop ri mb - pops rs lk : τ option

Proposition 1.1. Refinement from Equation (1) holds.

Proof. We proceed by symbolic execution; we open the invariant and consider two cases: whether the mailbox
contains an offer or not. If the mailbox is empty, then we proceed by proving the pop no offer refinement.
Otherwise the mailbox contains an offer (`, v1); furthermore we know that N(`) = (v2, γ, j,K) satisfying
JτK(v1, v2). From the invariant we also have offerRegγ′(N);; in combination we can obtain a persistent re-
source inOfferRegγ′(`, v2, γ, j,K). We can successfully close the invariant and keep inOfferRegγ′(`, v2, γ, j,K)
for later.

We continue with symbolic execution until we read the accept offer (`, v1) sub expression. Here we apply
the accept-offer-l rule. Once again, we open the stack invariant, which this time gives us offerRegγ′(N ′) for
some N ′. However, we still have a predicate inOfferRegγ′(`, v2, γ, j,K), which proves that N ′ still contains
the offer `. Then, from the offer registry invariant, we get is offerγ(`, j Z⇒K[pushs rs v2], j Z⇒K[()]) which
is the premise that we need for accept-offer-l. We are left with two goals, which are essentially1:

is offerγ(`, j Z⇒K[pushs rs v2], j Z⇒K[()]) −∗
|=>\ST N pop no offer ri mb - pops rs lk : τ option

and

j Z⇒K[pushs rs v2] ∗ (j Z⇒K[()] −∗ is offerγ(`, j Z⇒K[pushs rs v2], j Z⇒K[()])) ∗
JτK(v1, v2) −∗ |=>\ST N Some(v1) - pops rs lk : τ option

The first goal is solved by closing the invariant (with the is offer resource), and proving the pop no offer
refinement as standard. For the second refinement, if we want to close the invariant we need to obtain the
is offer resource; for that we have to symbolically execute the pushs rs v2 operation in the ghost thread pool
j. The additional benefit of doing that is that v2 ends up on top of the stack rs. That means that we can
later symbolically execute the right-hand side of the refinement and pop v2 right back into the right-hand
side of the refinement:

|=>\ST N Some(v1) - Some(v2) : τ option.

Closing the invariant will complete the refinement proof. �

In order to carry out such a proof in Coq it is crucial to be able to symbolically execute expression in the
ghost thread pool, which we can do by using the Coq tactics.

1Modulo pure reductions.

8 DAN FRUMIN, ROBBERT KREBBERS, AND LARS BIRKEDAL

Push refinement and specification for revoke offer. Verifying the refinement of the push operations is going
to be harder. When, during the execution of push, we create a new offer and store it in the mailbox mb, we
also have to provide a corresponding resources for the offer registry. That is, we will have to take out the
right-hand side out of the refinement: j Z⇒K[pushs rs v]. One approach to verifying the push refinement
would be to just unfold the definition of the refinement proposition at the point where we assign Some(off)
to the mailbox mb, and proceed by reasoning in the WP-calculus in Iris. However, we believe that it is
better to localize reasoning in WP-calculus; for that, note that despite the fact that we have to “give up”
the right-hand side when we store the offer, we do get it back after revoke offer is finished. Either we get
the resource that we gave up (j Z⇒K[pushs rs v]), or the resource that has been “helped” by some other
thread (j Z⇒K[()]).

To facilitate this, we formulate the following symbolic execution rule for revoke offer :

revoke-offer-l
offer tokenγ

(
∀j K ′. j Z⇒K ′[e1] ≡−∗E > . ≡−∗> E . is offerγ(`, j Z⇒K ′[e1], j Z⇒K ′[e2]) ∗

.(is offerγ(`, j Z⇒K ′[e1], j Z⇒K ′[e2]) −∗ ((|=E K[None] - e2 : τ) ∧ (|=E K[Some(v)] - e1 : τ)))
)

|=E K[revoke offer (v, `)] - e1 : τ

This rule states that we may symbolically execute revoke offer in a situation when we have an invariant
open (which is the situation that we end up after symbolically executing mb ← Some(off)), and when the
right-hand side is exactly2 e1. In order to do that we must provide upfront an offer token offer tokenγ , and
we must provide certain view shift which says the following:

• Given j Z⇒K ′[e1] we can close the invariant, and open it again to provide is offerγ(`, j Z⇒K ′[e1], j Z⇒
K ′[e2]);

• And in addition to that, we have to prove two goals, both under the assumption is offerγ(`, j Z⇒
K ′[e1], j Z⇒ K ′[e2]). One for when helping was successful, and some other thread has reduced e1
to e2, which is the new right-hand side. Another for when the helping did not happen and the
right-hand side remains e1.

The 1.5 rule is provable only through unfolding the definition of the refinement proposition and the
definition of is offer. However, if 1.5 is proven, then we can use it in the proof of the push refinement, thus
encapsulating the place where reasoning outside ReLoC happens.

Proposition 1.2. The following refinement holds:

stackInv(ri,mb, rs)
ST N ∗ JτK(v1, v2) −∗ |= push ri mb v1 - pushs rs lk v2 : unit

Proof. We start by symbolic execution. After creating a new offer (v1, `) we get offer tokenγ and (∀P Q. P −∗
is offerγ(`, P,Q)). Then we symbolically execute the assignment mb ← Some(v1, `). In order to do that we
open the invariant, to get access to mb 7→i −. We then end up in a situation when our invariant is open, and
we can symbolically execute revoke offer . Note that at this point we cannot restore the invariant, because
mb points to Some(v1, `), but ` is not yet present in the offer registry N . We also cannot put it in the
registry yet, because we do not have an is offer resource associate with it yet.

We then apply 1.5. In order to discharge the premises of that rule we have to, first and foremost, close
the invariant using the resource j Z⇒ K ′[pushs rs lk v2] for some j and K ′. Using this resource, and the
“constructor” (∀P Q. P −∗ is offerγ(`, P,Q)) we get is offerγ(`, j Z⇒K ′[pushs rs lk v2], j Z⇒K ′[()]). We can
then insert ` into the offer registry and close the invariant.

2The rule can be generalized to the situation when e1 is in under an evaluation context.

RELOC RELOADED: TECHNICAL APPENDIX 9

For the second step, we have to provide |V> >\ST N
. is offerγ(`, j Z⇒K ′[pushs rs lk v2], j Z⇒K ′[()]) ∗

That is doable: we just open the invariant and recall that ` was stored in the offer registry.
Lastly, we get is offerγ(`, j Z⇒K ′[pushs rs lk v2], j Z⇒K ′[()]) and we have to prove two goals.

(1) |=>\ST N () - () : unit;
(2) |=>\ST N let tail = ! r i in . . . - pushs rs lk v2 : unit.

In the first case we see that the offer was accepted, and we do not have anything left to do – we even have
a matching right-hand side. All that remains is to close the invariant to restore the mask and verify that ()
refines ().

In the second case the offer was not accepted by any other thread, and we have to symbolically execute the
actual push operation ourselves. The proof for that is fairly standard, and boils down to using the stacklink
predicate and updating the contents of both stack at the right time. �

The full formalized proof can be found in the accompanying Coq sources.
Finally, Proposition 1.1 and Proposition 1.2 are used to prove the final refinement theorem:

|= mk stack () - mk stacks () : (unit→ τ option)× (τ → unit).

As we have seen in this section, for data structures with helping we cannot carry out complete proofs
inside ReLoC, and may have to resort to breaking the abstraction in order to complete the proof. However,
much like semantic typing can be seamlessly combined with syntactic typing, proofs of propositions that
require breaking the ReLoC abstractions can be used as parts of proofs of larger propositions in a seamless
manner. It is only required that we state the intermediate propositions carefully enough to include only the
refinement propositions in the conclusion and the premises.

References

[BB20] Lars Birkedal and Aleš Bizjak. Lecture notes on iris: Higher-order concurrent separation logic. https://iris-project.

org/tutorial-material.html, 2020.
[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In SPAA, pages 206–215, 2004.

Radboud University

Email address: dfrumin@cs.ru.nl

Delft University of Technology

Email address: mail@robbertkrebbers.nl

Aarhus University
Email address: birkedal@cs.au.dk

https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html

	1. Linearizability of stack with helping
	1.1. Offers
	1.2. Stack implementation
	1.3. Specification stack
	1.4. Specification for the offers
	1.5. Verifying the refinement

	References

