
Concurrent Separation Logics
for Safety, Refinement, and Security

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op vrijdag 12 maart 2021
om 11.30 uur precies

door

Daniil Frumin

geboren op 21 januari 1993
te Krasnojarsk, Rusland

Promotor:

• Prof. dr. Herman Geuvers

Copromotoren:

• Dr. Robbert Krebbers
• Dr. Freek Wiedijk

Manuscriptcommissie:

• Prof. dr. Sven Bodo Scholz (voorzitter)
• Prof. dr. Peter O’Hearn (University College London, Verenigd Koninkrijk)
• Prof. dr. Derek Dreyer (MPI-SWS, Duitsland)
• Prof. dr. Philippa Gardner (Imperial College London, Verenigd Koninkrijk)
• Dr. Aslan Askarov (Aarhus University, Denemarken)

This research has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics) and the Radboud University.

This research has been funded by NWO (STW project “Sovereign”, project num-
ber STW.14319) and has furthermore been supported by COST Action EUTypes
(CA15123).

Cover design: Yijun Guo
Printed by: Gildeprint
ISBN: 9789464191288

Copyright © 2021 Dan Frumin
cba This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Acknowledgments

While it is only my name that stands on the cover of this thesis, the truth is that this
manuscript would not have been possible without the people who have supported
me during these years. First and foremost, I would like to thank my daily supervisor
Robbert. I always enjoyed our discussions and always looked forward to our day-long
meetings full of exciting research and programming. Robbert, I am positive that your
influence on my research, my writing and programming styles will extend beyond
my PhD (with the main difference being that you can no longer prevent me from
using Fraktur).

I would also like to thank my other supervisors, Herman and Freek; working with
you was a pleasure, be it preparing for the Type Theory course or just discussing
research. Your enthusiasm was contagious. Thank you for supporting me and guiding
me through my PhD.

Speaking of my mentors, I can’t help but mention Lars Birkedal, who guided
me on many occasions. His influence on the work presented in this thesis and my
research outlook in general cannot be overstated. Thanks to you, Lars, my visits
to Aarhus (and I was privileged enough to have several such visits) were always
productive and enlightening.

Robbert and Lars were my main collaborators, but I was lucky enough to work
with other amazing people along the way. Niels and Léon, thank you for being
great friends as well as great collaborators. I had so much fun doing pair program-
ming/proving with both of you. I will miss your jokes and all the music discussions
that we had. I sincerely hope that we can collaborate again in the future.

Thanks to Niels, I also had the pleasure of working with Marco Maggesi and
Benedikt Ahrens. I would like to thank them for all the wonderful type theory
discussions and all the fresh cannoli we had in Florence.

I would also like to mention the manuscript committee, Aslan Askarov, Derek
Dreyer, Philippa Gardner, Peter O’Hearn, and Sven-Bodo Scholz. Thank you for
taking the time to read and assess my thesis.

Of course, getting through a PhD was not just about research and writing. At
this point I am almost contractually obliged to thank everyone who drank Brouwers
and ate kapsalon with me on the third floor, as well as all of the people who dared
me to play fußball with them. In particular, Guillaume, Jon, Kenta, Ko, the Joosts,
Paulus, Joshua, Bas & Bram (thank you for fixing up the espresso machine, it was
worth getting addicted to coffee), Freek V., Carlo. Big thanks to the Foundations
group at RU, which includes, aside from some of the already mentioned people, Ike,
Jules, Jana, and Jurriaan. Ingrid, thank you for helping me with navigating through
the university structures. Shout out to all the Aarhus people who spent time with me
there, Aleš, Amin, Marit, Simon F.V., Simon G., Thomas, and all the others. I am also
grateful to the Groningen people that helped me with settling in, Jorge, Hylke, Sofia,
Marie-Anne.

Marc, thank you for being a great buddy, a great office mate, and agreeing to be
my paranymph. I was lucky to be on the same project as you. Sander, my dear friend,

i

thank you so much. Without your support and friendship I would have gone crazy
multiple times over.

My dear parents, Elena and Isak, thank you for offering me your unconditional
love and support during my studies and beyond. Pepa, thank you for being there for
me, for bearing with me, and for making me a better person. You really inspire and
challenge me in many positive ways.

Thank you all.

Dan Frumin
Groningen, January 2021

ii

Моим родителям, Лене и Исаку.

Contents

1 Introduction 1
1.1 Concurrent separation logics . 3
1.2 Mechanized reasoning . 6
1.3 Logics introduced in this thesis . 8
1.4 Contributions and outline . 12

2 Background on separation logic 17
2.1 Syntax and semantics of HeapLang . 17
2.2 Basics of Iris . 20
2.3 Invariants in Iris . 31
2.4 Custom ghost state in Iris . 34
2.5 The Coq mechanization . 40
2.6 Defining custom logics in Iris . 43

3 λMC: a logic for non-determinsim in C expressions 45
3.1 Introduction . 45
3.2 λMC: A monadic definitional semantics of C 48
3.3 Separation logic with weakest preconditions for λMC 53
3.4 Soundness of weakest preconditions for λMC 58
3.5 A symbolic executor for λMC . 63
3.6 A verification condition generator for λMC 66
3.7 Discussion . 69
3.8 Related work . 71

4 ReLoC: a logic for proving contextual refinements 75
4.1 Introduction . 75
4.2 The programming language . 80
4.3 A tour of ReLoC . 83
4.4 A closer look at ReLoC . 95
4.5 Relational specifications in ReLoC . 101
4.6 Speculative reasoning using prophecy variables 114
4.7 The logical relations model of ReLoC 121
4.8 The Coq mechanization of ReLoC . 126
4.9 Related work . 131
4.10 Discussion and conclusion . 135

5 SeLoC: a logic for proving non-interference 139
5.1 Introduction . 139

iv

5.2 Motivating examples . 141
5.3 Preliminaries . 146
5.4 Overview of SeLoC . 148
5.5 Type system and logical relations . 155
5.6 Modular separation logic specifications 160
5.7 Soundness . 164
5.8 Mechanization in Coq . 167
5.9 Discussion . 167
5.10 HOCAP-style modular specifications 170
5.11 Related work . 170
5.12 Conclusions and future work . 174

Bibliography 175

Summary 191

Samenvatting 193

Titles in the IPA Dissertation Series since 2018 195

Research Data Management 199

About the author 201

1Introduction

In a 2002 lecture, Donald Knuth proclaimed that “software is hard” [Knu02]. And
computer scientists tend to agree with this sentiment. In fact, many would say that
software has only been getting harder since then. Software has been getting more
complex, in part due to the proliferation of concurrent systems. That is, systems com-
prised of several components (threads), which share common resources, communicate
with each other, and transfer resources between each other. Unfortunately for the
users and developers of such systems, and somewhat fortunately for the computer
science researchers, concurrent systems are notoriously hard to analyze. They are
hard to analyze because concurrent systems can exhibit a large amount of possible
behaviors. On a more technical level, the complexity of a concurrent system grows
exponentially in the number of components, when we measure the complexity in
terms of the interleavings of behaviors of the individual components.

To certify concurrent software systems and to ensure the absence of bugs, re-
searchers have applied various formal verification techniques. The goal of formal
verification is to establish the formal “correctness” of software. What it means for
software to be “correct” depends on the kind of property you want to establish. There
are various such properties of interest, some of which are tricky to verify in the
context of concurrent programs. This thesis focuses on the verification of three of
these properties:

1. safety: a program is safe if it does not crash or perform illegal operations (e.g.,
does not dereference a freed pointer);

2. refinement: a program refines another program if the observable behaviors of
the first program are included in the observable behaviors of the second one;

3. security: a program is secure if its execution does not leak its secret data to
attackers.

The goal of this thesis is to devise verification methods for establishing these proper-
ties and reasoning about them for concurrent programs.

To evaluate our efforts, we put forward the following desiderata:
• Local reasoning. We want to be able to reason about threads in isolation, and

talk about the specific parts of the state that a thread/a part of the program
reads or modifies. If a program has been verified locally, then it can be put in a
bigger context without sacrificing the property that we have already verified.

• Compositionality. We want to be able to reason about different program modules
compositionally. For example, we want to formulate specifications for program

1

1. Introduction

libraries that are modular. That is, the specifications should describe in what
context and under which conditions the library satisfies the desired property.
Such specifications should be expressive enough to allow many different clients
of the library to be verified based only on the specification of the library, without
referencing the source code.

• Clear and machine-checked soundness theorem. We want to formulate each prop-
erty clearly in terms of the operational semantics of the programming language
and independently of the verification method. The corresponding verification
method should come with a soundness statement, ensuring that the method
yields the desired property and conforms with the operational semantics. The
soundness statement and its proof should be mechanized.

• Effective formal reasoning. We want to be able to use our methods to verify
programs formally. This entails not only that our methods are sound, but that
they can be used to verify actual programs. In turn this requires tool support
that is formally connected to the verified soundness theorem.

In line with these criteria, we take an approach that is based on mechanized concurrent
separation logics.

A concurrent separation logic is a program logic. That is, a formal system that
allow us to reason about programs and verify their properties. It stems from se-
quential separation logic, an extension of Hoare logic which has been designed to
handle sequential programs that manipulate pointers [Rey02; ORY01]. O’Hearn and
Brookes noticed that separation logic can be naturally extended for reasoning about
concurrent stateful programs. This observation led them to develop Concurrent Sepa-
ration Logic (CSL) [OHe07; Bro07], which won them the 2016 Gödel Prize. By basing
our methods on concurrent separation logics, we ensure that we are able to reason
locally and compositionally about concurrent programs. Separation logic satisfies our
demand for local reasoning because specifications in separation logic only pertain
to the parts of the state that are operated on by the program at hand. Sequential
separation logic already allows for a form of compositionality: components that
operate on independent parts of the state can be verified independently. CSL and
its descendants (which we refer to as “concurrent separation logics”) allow further
compositionality on the level of threads, even in the presence of some shared state.

In order to connect concurrent separation logics to mechanized soundness theorems
and to enable effective formal reasoning in the logics themselves, we mechanize the
logics in a proof assistant. Proof assistants, like Coq [Coq20], are computer programs
that allow the user to formulate machine-checked proofs of mathematical statements.
These proofs are written in a formal logic (e.g., dependent type theory, in the case
of Coq) and are verified by a computer. Having a machine-checked proof of a
mathematical statement gives us more certainty about its correctness: the proof
assistant ensures that the fully formal proof does not skip any details, and that every
reasoning step is correct.

Mechanizing a program logic in a proof assistant has two advantages. First, as
program logics get more complex, the soundness proofs get more complicated. As
such, in informal pen-and-paper proofs of soundness mistakes can be easily made.
Proof assistants give us additional assurance that programs logics are actually sound.

2

1.1. Concurrent separation logics

If we obtain a mechanized soundness theorem for the program logic, then we can
compose it with a proof about a specific program inside the program logic. This way,
we obtain a closed proof that the program satisfies a desired property. The statements
in the obtained proof do not refer to the program logic at all.

The second advantage to having a mechanized program logic is that it enables
effective formal reasoning in the program logic itself. That is, employing the program
logic to formally reason about concrete programs. Mechanizing reasoning inside the
program logic bolsters our confidence in the correctness of our proofs, because it
forces us to pay attention to details that we might have otherwise overlooked in a
pen-and-paper proof. Furthermore, a good mechanization alleviates the user’s effort
by automatically discharging certain subgoals or cases. As a result, the user has to
do less tedious work. For example, in one of the chapters in this thesis we design
and verify a verification condition generator—a procedure that helps with automated
verification of certain programs.

In short, in this thesis we develop mechanized concurrent separation logics for
reasoning about safety, refinement, and security of concurrent programs. All the
material that we present in this thesis has been formalized in the Coq proof assistant,
including the soundness proofs and the specific examples and case studies that we
consider. The URL for the Coq formalization can be found at the end of this chapter.

In the remainder of the introduction we provide the context needed to understand
the place of this thesis in the research landscape, and explain the main contributions.
We describe in more details the roles of concurrent separation logic (Section 1.1) and
mechanized reasoning (Section 1.2) in this thesis. We then describe more precisely
the kind of properties we want to verify with our logics (Section 1.3), and give an
outline for the rest of the thesis (Section 1.4).

1.1 Concurrent separation logics

When I first started teaching myself separation logic at the beginning of my PhD,
I was somewhat taken aback by the fact that both separation logic and concurrent
separation logic are relatively recent inventions/discoveries. In my mind, something
that offers so much conceptual clarity with so little technical overhead must have
been around for ages, refined and distilled to the form that we are familiar today.
But, to my surprise, the origins of separation logic stem from the early 2000s, and
not from the late 1970s, as I had initially guessed.

Separation logic has been developed by Reynolds, O’Hearn, Ishtiaq, and
Yang [Rey02; IO01; ORY01] as an extension of Hoare logic, based on the ideas
introduced by O’Hearn and Pym [OP99] in their logic of bunched implications.
Propositions in separation logic are evaluated over the program state (the heap). The
points-to connective of separation logic ` 7→ v states that the current heap contains
the location ` with the value v. The separating conjunction P ∗Q states that the current
heap can be subdivided into two disjoint pieces, which satisfy P and Q respectively.
In particular `1 7→ v1 ∗ `2 7→ v2 implies that the locations `1 are `2 are different,
because `1 7→ v1 and `2 7→ v2 have to be satisfied by disjoint parts of the heap. This
fact can be written as a separating logic sequent `1 7→ v1 ∗ `2 7→ v2 ` `1 , `2: if a heap

3

1. Introduction

can be subdivided into two disjoint parts containing `1 and `2 with appropriate
values, then `1 , `2. Thus, separating conjunction is a crucial connective of separation
logic which can be used to talk about pointers that do not alias each other. It has
already been suggested in the original papers on separation logic and the logic of
bunched implications that a good way of thinking about propositions of separation
logic is in terms of resources: a proposition P corresponds to some resources (usually,
parts of the heap), and validity of P (in the current part of the heap) signifies
ownership of these resources by a program (or by a thread, in case of a multi-threaded
program).

It turned out that the resource interpretation of separation logic, and its capabil-
ities for local reasoning, are well-suited for reasoning about concurrent programs.
O’Hearn and Brookes have developed Concurrent Separation Logic [OHe07; Bro07]
and proved sound with respect to denotational semantics specifically for this purpose.
They observed that in concurrent programs, each thread can manipulate its own
local state freely, whereas the specific parts of the state that are accessed by multiple
threads are usually accessed within critical regions (ensuring mutual exclusion). CSL
has extended separation logic with rules for parallel composition of threads, in which
resources joined by separating conjunction can be freely distributed between threads,
and a mechanism of transferring ownership of resources through critical regions. A
thread that requires a shared resource can obtain it by entering a critical region; the
resource is relinquished again once the thread leaves the critical region.

Another important conceptual advancement, in the vein of the resource inter-
pretation, is the idea of using separating conjunction to compose intertwined and
seemingly overlapping resources. The simplest example of this is the idea of fractional
permissions [Boy03; Bor+05]: a location ` can be owned by a thread only “partially”,
with some rational fraction q ∈ (0,1], denoted as ` q7−→ v. Having such a partial resource
`
q7−→ v with q < 1, allows the thread to read from a location, but not write to it. Writing

to a location requires a resource ` 17−→ v, which represents the full ownership of the
location `.

Initially, when a new location is allocated, the user obtains a full permission ` 17−→ v.
Then, this full permission can be split into multiple fractional permissions according
to the following rule:

`
q17−−→ v1 ∗ `

q27−−→ v2 a` `
q1+q27−−−−−→ v1 ∗ (v1 = v2) ∗ (q1 + q2 ≤ 1).

For example, we can split ` 17−→ v into ` 0.57−−→ v ∗ ` 0.57−−→ v. The fractional permissions
can then be shared among different threads that read from the location `, but do not
write to it.

By indexing the points-to predicate with rational numbers, we allow for a sin-
gle location to be split unbounded number of times (each ` q7−→ v can be split into
`
q/27−−−→ v ∗ ` q/27−−−→ v). At the same time, the index q is bounded, as it has to be below or

equal to 1. This allows the user to re-combine the fractional permissions into a full
permission, which grants complete and exclusive access to the location. To see how
this works, consider that when a thread owns a resource ` q7−→ v, it must be the case
that all the other fractional permissions for the location ` add up to ` 1−q7−−−→ v. When
q = 1, this entails that no other thread can have a fractional permission for accessing

4

1.1. Concurrent separation logics

`. Thus, by using fractions from the set (0,1] we ensure not only that we can split a
writable permission into an unbounded number of read-only permissions, but also
that we can re-combine the read-only resources into a writable permission.

The idea of treating physically overlapping resources as logically disjoint has been
dubbed the “fiction of separation” [DGW10]. It has proven to be especially powerful
in a concurrent setting in combination with abstraction [Din+10]. The “fictional
separation” refers to the fact that even if threads are operating on intertwined pieces
of state, we can still view them as operating on logically disjoint resources. This
can be illustrated with the following example (from [DGW10]). Suppose we have a
module T that implements binary trees using linked lists. Under this implementation,
a tree with subtrees t1 and t2 is represented in such a way that the nodes of t1 and
t2 are connected with each other somehow (e.g., a node from t2 might be reachable
from a node of t1). Despite this, a client of T , as long as it respects the abstraction
boundaries of the module, may operate on t1 and t2 independently. The client might
decide to remove or add nodes in t1; this might trigger a change in the internal
representation of the whole tree (i.e., in case of re-balancing), but from the point
of view of the client, those operations do not interfere with the subtree t2. Thus,
separation happens at the abstract level of trees and subtrees; this separation is
“fictional” because the underlying representations of abstractly independent subtrees
are actually intertwined. By allowing a treatment of intertwined resources as disjoint,
fictional separation provides a layer of abstraction useful for compositional reasoning.

While early versions of concurrent separation logics have been formulated for a
first-order imperative language with first-order locks and structural parallel com-
position, subsequent work has focused on extending this approach to cover more
concurrent programs, such as those involving storable locks [Got+07], fork/join con-
currency [Dod+09], fine-grained concurrency with atomic operations [Vaf08; PBO07],
higher-order functions [SBP13], hardware interrupts [Fen+09], etc.

Increase in the complexity of the programming language features calls an increase
in expressivity of the logics and exploration of new reasoning principles. Modern
logics support higher-order quantification and impredicative invariants [SB14; BBT07;
SBP13; HAN08; App14; Jun+15; Jun+16] for reasoning about semantically cyclic
features, such as higher-order store (i.e., references to references to references . . .).

As we have seen, the groundwork laid by CSL has proven to be a fertile ground for
research, and the proliferation of (a priori incompatible) ideas in the area has resulted
in a vast number of different concurrent separation logics aimed at tackling various
kinds of properties and programming language paradigms. There turned out to be
a need of unifying various ideas and logics in a common foundational framework
that would allow the users to express and encode the same methods and proofs using
more principled building blocks. A notable answer to this challenging task (and one
of the most important ones in the context of this thesis) was the introduction of the
concurrent separation logic Iris [Jun+18b].

Iris presents a unified language-agnostic framework for reasoning in higher-order
separation logic using two principled and orthogonal tools—invariants and ghost
state [Jun+15; Jun+16]—in order to formulate protocols (on shared state), that all
threads have to adhere to. Moreover, one of the ideas behind Iris is to provide some
essential building blocks, from which more complicated constructions, typical in

5

1. Introduction

Coq

Coq
Kernel

Coq
engine

Proof objects
Tactics

Goals

QED

Figure 1.1: Interaction with the Coq proof assistant.

concurrent separation logics, can be recovered. In terms of programming language
features, Iris seems to be the state of the art. Due to its impredicative higher-order
nature and powerful custom ghost state mechanism, Iris has been used to verify
type safety of many type systems (including the type safety and race-freedom of
the advanced type system behind the Rust programming language [Jun+18a]), as
well as the correctness of fine-grained concurrent algorithms. Due to its generality,
extensibility, and expressivity, Iris has proven itself to be a great basis for developing
other program logics on top of. In addition, Iris features a flexible and practical Coq
formalization (one that enables effective formal reasoning). Due to all of this, we use
Iris as starting point and the essential building block for the logics that we present in
this thesis.

A historical side-note. For a more detailed history of Concurrent Separation Logic
please see a retrospective paper [BO16]. See [Cha20, Section 10] and [OHe19] for
surveys of sequential separation logics. For a more detailed history of Iris specifically
see [Jun+18b].

1.2 Mechanized reasoning

Proof assistants are software tools that assist the user with the development of formal,
machine-checked proofs. All the results in this thesis have been mechanized in the
Coq proof assistant [Coq20]. Like many other proof assistants, Coq enables its users
to develop formal proofs through an interactive process. A user interacts with Coq
by feeding it commands that modify the state of the proof, and looking at the replies
from Coq. This process is represented1 schematically in Figure 1.1, which I have
slightly adapted from Geuvers [Geu09].

The way this interaction typically unfolds is as follows. The user begins by
formulating a theorem statement. Coq then checks whether the theorem statement is
well-formed. If Coq accepts the statement of the theorem, then it provides the user
with a goal that the user has to prove. The user then issues commands to Coq (in the
form of tactics), which correspond to formal reasoning steps. For each command, Coq

1Two of my fellow students have objected to this representation on the basis that depicting a proof
assistant user with a smiley face is inaccurate.

6

1.2. Mechanized reasoning

responds to the user with an updated goal. The user then examines the goal, issues
new commands, and so on.

In the end, the user finishes the proof (solves the goal) and asks Coq to check
whether the proof is correct. Proof checking is delegated to Coq’s kernel—a relatively
small program that the user trusts to be correct. While processing the user’s tactics
and updating the goal, under the hood Coq is constructing a proof object, which is a
compact formal representation of a proof. This proof object is what is being checked
at the end by the kernel.

Interactive theorem proving in Coq has seen many applications in verified
mathematics and computer science (probably the most well-known proof devel-
opments in Coq in the respective areas are a mechanized proof of the odd-order
theorem [Gon+13] and a certified C compiler [Ler09]). In particular, Coq has been
a popular tool for formalizing programming languages, not least because of its
capabilities for specifying inductive definitions for operational semantics and typing
derivations. The properties that we investigate in this thesis are formulated in
Coq directly in terms of the mechanized operational semantics of a programming
language.

All the mechanizations in Coq are written in a formal language based on the
dependent type theory called “Calculus of Constructions” (CoC), although in this
thesis we will refer to it, somewhat frivolously, as the “Coq logic” or metalogic. By
itself, Coq does not provide any support for separation logic or any other program
logics. Program logics can instead be encoded in the Coq logic and connected to
the mechanized operational semantics that way. When we encode a logic in Coq,
we refer to it as the object logic. These object logics are connected to the properties
that we want to show via a soundness statement, which says if some formula over
a program e is derivable in the object logic, then e has the desired property. If we
obtain a specific mechanized proof in the object logic about a program, then we can
compose it with the soundness theorem, obtaining a fully machine-checked proof of
a proposition that refers only to the operational semantics. This is something that we
deem necessary for a clear and mechanized soundness theorem.

Once we have a formally stated and verified soundness theorem, then it is natural
to ask: how do we obtain a specific mechanized proof in the object logic, the one
that we want to compose with the soundness theorem? In other words, how do we
actually use Coq to reason inside the object logic? To resolve this disconnect, the Iris
Coq formalization includes a specialized proof mode [KTB17; Kre+18] for carrying
out proofs inside separation logic in Coq. The Iris proof mode includes tactics for
the standard separation logic connectives. In order to “plug in” our logics (which are
extensions of Iris) into the proof mode, we further develop custom tactics for the new
connectives that we introduce. Thus, using the Iris Coq formalization gives us the
benefits of being able to reason formally in our logics using their Coq formalizations,
enabling effective formal reasoning.

A historical side-note. For a historical overview on proof assistants and mecha-
nized reasoning see [Geu09] and [Rin+19, Section 4].

7

1. Introduction

1.3 Logics introduced in this thesis

In this thesis we introduce three domain-specific separation logics for reasoning
about the three properties mentioned in the title: safety, refinement, and security.
We develop those program logics to achieve the properties that we stated in the
beginning of the introduction. In the following chapters we demonstrate how we
achieve these points. Below we briefly explain these properties and the key ideas
behind the separation logics that we propose.

1.3.1 Safety

The first property that we consider is safety. We say that a program is safe if no execu-
tion of it results in some kind of undefined behavior: behavior that is not accounted
for by the semantics. A common example of undefined behavior is dereferencing a
dangling pointer. The C programming languages has many other kinds of undefined
behavior, one class of which are sequence point violations [ISO12, 6.5p2]. To explain
sequence point violations, we need to recall that the order of evaluation of operands
in a C expression is unspecified. For example, in the expression

e = (e1++) + (e2++);

the operands (e1++) and (e2++) can be evaluated in any order. Furthermore, a com-
piler can interleave the execution of the operands. Hence, the unspecified evaluation
order of operands corresponds to operands being executed concurrently, and the
executions are synchronized at sequence points, e.g., at the end of a full expression (;)
or before and after a function call.

With this in mind, data races on locations, during the evaluation of the operands,
are considered undefined behavior. For example, the following program has unde-
fined behavior due to a sequence point violation:

x = (x++) + (x++);

Despite the sequence point restrictions, performing side effects in operands is a
frequent pattern in C. We can see an example of that in the following program that
copies n bytes from q to p:

while (n--) { *(p++) = *(q++); }

Note that this program is correct (and makes sense) only if the pointers p and q are
not aliased (do not point to the same piece of memory).

It has already been suggested in [Kre14] that a concurrent separation logic can
be used to reason about the unspecified evaluation order (which corresponds to
concurrent execution) and to prove the absence of sequence point violations (which
corresponds to absence of data races). However, the logic of [Kre14] was not amend-
able to automation (the rules were not algorithmic), and it was difficult to extend it
with new features (such as protocols on shared state).

Based on the ideas in [Kre14], we have developed a program logic λMC (Chapter 3)
suitable for proving that a program does not exhibit a sequence point violation or
dereferences a dangling pointer. To facilitate practical reasoning about programs in

8

1.3. Logics introduced in this thesis

λMC, we have devised a verification condition generator (VCG), which is integrated
into λMC. The VCG can be used to solve goals and to verify subprograms that
are amendable to such automated analysis, while still leaving room for interactive
proving when necessary. The verification condition generator uses a novel symbolic
execution algorithm that symbolically computes a program in a symbolic heap,
producing both an updated part of a heap, and a symbolic frame – the part of
the heap that is untouched by the program. The frame is used to automatically
determine how to distribute parts of the symbolic heap for symbolic execution of
subexpressions. The symbolic execution algorithm and the VCG itself are defined as
executable functions in Coq and are proven correct using the λMC program logic.

The logic of [Kre14] and its soundness were given via an ad-hoc model, which
limited its expressiveness and made it hard to extend the logic. Our program logic has
been developed on top of Iris, and thereby inherits all advanced features of Iris (like
its expressive support for ghost state and invariants), without having to model these
explicitly. We have constructed λMC by composing a program logic for a monadic
fragment of an ML-like language, with a novel definitional translation of a fragment
of C into the mentioned monadic fragment.

The logic λMC is named like this because our definitional translation targets a
functional language (λ) and uses monadic combinators (M).

1.3.2 Refinement

The second property that we consider is refinement between two programs, specifically
contextual refinement. Contextual refinement tells us when observable behavior of
one program is included in the observable behavior of another program, and it is
one half of contextual equivalence—the “golden standard” for the notion of program
equivalence. A program e1 contextually refines a program e2 (denoted as e1 -ctx e2),
when e2 can be substituted for e1 in a larger program (referred to as a context) without
changing the overall observable behavior.

Contextual refinement has several practical applications. For example, it is used
for showing that an optimized version of a data structure refines a naive implementa-
tion, or for showing that certain algebraic laws about program semantics hold. In
the setting of concurrent programs, contextual refinement is useful for establishing
linearizability [HW90; Fil+10], which is a commonly established correctness criterion
for concurrent programs. Roughly, a module is linearizable if it behaves, according to
an arbitrary client, as if it was sequential. To establish that a module is linearizable it
suffices to establish that the module refines a version of itself, where all the operations
have been protected by a lock.

Proving contextual refinements directly is tricky, because in order to establish
contextual refinement we have to consider program executions in an arbitrary context.
Additional complications may arise from specific programming language features
like concurrency and mutable state. For example, consider the program (written here
in an ML-like language)

let x = f () in (x,x)

9

1. Introduction

that computes f () and returns a tuple with the result of the computation. In a pure
setting, this program would refine (and vice versa) the program

(f (), f ())

computing f () twice. However, in presence of effects like mutable state this refine-
ment does not hold, because there is no guarantee that invoking f twice will produce
the same result. As another example, consider the program.

let x = ref(0) in x← 10; !x

that allocates a new mutable reference x, assigns 10 to it, and then dereferences it.
This program refines a simple program that just returns the number 10:

(let x = ref(0) in x← 10; !x)-ctx 10.

This is because the reference x is local to the left-hand side, and no context can access
it. However, if we are in a concurrent setting and we consider a version where x is
free, then the following refinement no longer holds:

x← 10; !x -ctx 10.

It does not hold because the program on the left-hand side can be placed in a context
where another thread assigns some value to x.

To make reasoning about contextual refinements more tractable, researchers have
formulated models for reasoning about contextual refinements in a more local way.
One such class of models is based on logical relations [PA93; DAB09; Dre+10; Tur+13;
TDB13], allowing to reduce contextual refinement to a more local notion of logical
refinement. Recently, Krebbers, Timany, and Birkedal [KTB17] and Timany [Tim18]
have established a logical relations model, using Iris, for an ML-like programming
language with references and concurrency. This model allows for mechanized ver-
ification of contextual refinements for concurrent programs, and it has been used
to established type safety of System F, extended with references, concurrency, and
recursive types. However, proofs of logical refinements in this development involve
unfolding the definition of logical refinement and reasoning directly in the model.

Building up on their work, we have developed a relational logic ReLoC (Chapter 4)
for proving logical refinements between concurrent programs. In ReLoC, we abstract
from the model of [KTB17], and provide a full-fledged relational logic. The core
of ReLoC is the refinement judgment e - e′ : τ , which expresses that a program e
logically refines a program e′ at type τ . To reason about the refinement judgment,
ReLoC includes symbolic execution rules and type-directed structural rules. The
refinement judgments in ReLoC are first-class (i.e., can be combined with the logical
connectives like any other proposition), which allows us to provide a template for
relational specifications of programs. Relational specifications generalize standard
Hoare logic-style specifications in unary program logics: they abstract away from
the implementation of the program and express its behavior in terms of pre- and
postconditions.

10

1.3. Logics introduced in this thesis

Furthermore, we show how to provide logically atomic relational specifications for
compound programs that are not atomic, but only appear to take effect at a single
instant in time, e.g., because the modify the global state in a consistent, atomic way.
With logically atomic relational specifications, we generalize the ideas of logical
atomicity from the logics HOCAP [SBP13] and TaDA [RDG14] to a relational setting.

We provide a mechanization of ReLoC in Coq, complete with the tactics for
reasoning inside the program logic. This allows us to mechanize a lot of example
refinements, some of which have not been mechanized before (partially due to the
complexity of formal reasoning).

The name ReLoC stands for “Relational Logic for Concurrency”.

1.3.3 Security

The final property that we consider in this thesis is security. A program is deemed
secure if it does not have any information leaks, i.e., if secret information is not
revealed to an attacker observing the program. In programming language research
the typical condition for enforcing security is non-interference: it says that changing
secret information in the program does not lead to observably different behavior.

A program can violate non-interference in several different ways. A program can
directly leak secret information from a secrete reference h to a publicly-observable
reference l:

l← !h.

However, information leaks can be indirect, as in the following example:

if (!h > 0) then l← 0 else l← 1.

The program leaks the information by branching on the value of h, and assigning a
different value to l based on this information. By contrast, the following program is
secure, because the two branches are indistinguishable:

if (!h > 0) then l← 0 else l← 0.

Additional sources of information leaks can come from concurrent interleavings. For
example, in the program

l← !h; l← 0

the value in hmay be leaked, even though the reference l gets overwritten. Depending
on whether the location l is shared, another thread may observe the leaked value of h,
prior to it being overwritten by 0. The scheduler presents another potential source of
information leaks; for example the program below leaks the value of h if run under a
uniform scheduler:

(l← true) || (l← false) || (l← !h).

In order to reason about non-interference of concurrent programs we have de-
veloped a relational logic SeLoC (Chapter 5). SeLoC is sound with respect to one
of the strongest notions of non-interference for concurrent programs: strong low-
bisimulations2 introduced by Sabelfeld and Sands [SS00]. To our knowledge, SeLoC is

2More specifically, a flow-sensitive version of it.

11

1. Introduction

the first program logic capable of foundational reasoning about such non-interference
criterion for fine-grained concurrent programs.

Using SeLoC as the base, we build a type system that tracks information flow
in the program. Type systems and type system-like logics have received a lot of
attention in the context of non-interference [PS03; MSS11; MSE18; EM19; Kar+18].
Such systems have the advantage of being highly compositional and admitting strong
automation (via type checking and type inference). However, conventional type
systems lack capabilities to reason about functional correctness of programs. Thus,
conventional type systems cannot be used to verify non-interference of programs
whose secrecy depends on run-time behavior. For example, in case of value-dependent
classification [ZM07; Mur+16; NBG13; LC15; GTA19], a classification of a variable
(whether it contains secret or publicly-observable data) depends on a run-time flag.

In SeLoC, we take an approach that combines the program logic and the type
system. Specifically, we provide an interpretation of the type system in SeLoC and
show that it is sound: if a program is well-typed, then it is secure. Program modules
that are well-typed can be combined with program modules that are not well-typed,
but nonetheless verified in the program logic. The resulting combined program
satisfies non-interference.

The name SeLoC stands for “Security Logic for Concurrency”.

1.4 Contributions and outline

This thesis contains a chapter with preliminaries, and three chapters that constitute
the main research content of the thesis. In Chapter 2 we recall the separation logic
preliminaries and formally define the semantics of the programming language that
we use throughout this thesis. The material presented in this chapter is not original.
The main chapters Chapters 3 to 5 introduce the original contributions of this thesis,
namely the three logics for verifying the three properties outlined in the introduction.
Each of these three chapters contains its own introduction and related work section,
and each of the three chapters can be read in isolation. Below we give an overview of
the main chapters and their contributions.

Chapter 3: λMC: a logic for non-determinsim in C expressions. In this chapter
we describe λMC: a semantics-by-translation for a subset of C and a corresponding
program logic for proving the absence of sequence point violations. The program
logic is based on the program logic described in [Kre14], however our logic is more
expressive and more amendable to automated verification. To demonstrate that, we
develop a verification condition generator that integrates automated verification with
interactive proving in λMC. This chapter is based on the publication

• Dan Frumin, Léon Gondelman, Robbert Krebbers. “Semi-Automated Reason-
ing About Non-Determinism in C” [FGK19a]. Presented at the 28th European
Symposium on Programming (ESOP), 2019.

The main contributions of this paper are:

12

1.4. Contributions and outline

• A novel semantics-by-translation of a fragment of C, that takes into account
unspecified evaluation order of subexpressions and undefined behavior due to
sequence points violations;

• A separation logic with a weakest precondition calculus, based on the logic
from [Kre14], but developed in Iris instead of a custom model;

• A symbolic execution algorithm that takes as input a program and a symbolic
heap, and calculates a symbolic postcondition and a symbolic frame.

• A mechanized verification condition generator (VCG), that is defined on top of
the symbolic execution algorithm, and that is verified w.r.t. the semantics of
λMC.

• A mechanization of the logic and integration of the VCG, which we demonstrate
on a number of examples, including a version of a memcpy function.

The notations for various logical connectives and the names of rules in Chapter 3
have been changed to be compatible with the rest of the thesis. Section 3.3 contains
an additional example with comments.

Chapter 4: ReLoC: a logic for proving contextual refinements. In this chapter we
describe ReLoC: a logic for proving refinements of concurrent programs. We provide
a way of giving relational specifications in ReLoC for programs, which allows for
modular verification of refinements of involved algorithms and data structures. In
contrast to earlier work on refinements for languages with higher-order state and
concurrency (notably, [KTB17; Tim18]), ReLoC provides type-directed structural
rules and symbolic execution rules for manipulating refinement judgments, whereas
previously, such proofs were carried out by unfolding the refinement judgment into
its definition in the model. This chapter is based on the publications

• Dan Frumin, Robbert Krebbers, Lars Birkedal. “ReLoC: A Mechanized Relational
Logic for Fine-Grained Concurrency” [FKB18]. Presented at the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), 2018.

• Dan Frumin, Robbert Krebbers, Lars Birkedal. “ReLoC Reloaded: A Mechanized
Relational Logic for Fine-Grained Concurrency and Logical Atomicity” [FKB20b].
An extended and updated version of the LICS 2018 paper, currently under
submission.

The main contributions of these papers are:
• A novel relational logic for reasoning about refinements of fine-grained higher-

order concurrent programs;

• Novel ways of writing modular relational specifications for concurrent libraries,
based on atomic triples of TaDA [RDG14] and HOCAP-style [SBP13] specifica-
tions;

• A mechanization of ReLoC that supports interactive and practical reasoning
inside the ReLoC. We demonstrate the practicality of ReLoC on a number of
case studies, including verification of concurrent stacks, a ticket-based lock,
a name generation ADT, and algebraic laws for non-deterministic choice and
parallel and sequential composition operators.

13

1. Introduction

Chapter 5: SeLoC: a logic for proving non-interference. In this chapter we de-
scribe SeLoC: a logic for proving non-interference of concurrent programs. SeLoC
is a relational logic that captures the notion of strong-low bisimulation of concur-
rent programs. Using the method of semantic typing [Dre+19], we implement an
information-flow aware type system on top of SeLoC. By using semantic typing we
can compositionally verify programs that consist of both typeable and untypeable
parts. The former parts can be verified with a type checker and the latter parts can
be proved manually using the logic. This chapter is based on the publication

• Dan Frumin, Robbert Krebbers, Lars Birkedal. “Compositional Non-Interference
for Fine-Grained Concurrent Programs” [FKB21b]. To appear at the 42nd IEEE
Symposium on Security and Privacy (S&P), 2021.

The main contributions of this paper are:
• A novel relational logic for proving non-interference of fine-grained concurrent

programs;

• A relational version of weakest precondition and a soundness proof that in-
volves a bisimulation construction out of the closed proofs in SeLoC;

• A type system for information flow analysis, that is built on top of the SeLoC
and proven sound using logical relations;

• A mechanization of the logic and the type system, as well as a number of case
studies. The case studies include a secure implementation of a set data structure,
and an implementation of references with value-dependent classifications.

The material in Chapter 5 that was previously present in the appendix of the cor-
responding paper [FKB21b] has been expanded and moved into the main body of
the chapter. In particular, Section 5.7, Section 5.5 have been expanded and contain
material that was previously in the appendix of [FKB21b]; Section 5.9 was previously
only present in the appendix of [FKB21b].

Statement of contributions. As has been mentioned, the main chapters of this
thesis are based on several peer-reviewed publications, and are copied almost ver-
batim, with the format and the typography adapted to fit the presentation of the
thesis. Those publications were written with co-authors, so I should clarify my exact
involvement.

For the publications pertaining to Chapters 4 and 5, I am the main author, and
my co-authors served the supervisorial roles. I carried out the main research, under
the supervision of my co-authors and took the lead in writing the papers.

For the publication leading to Chapter 3, both me and my colleague Léon Gondel-
man were the main authors, and Robbert Krebbers was a supervisor to the project.
Together with Léon, we have actively worked on all the parts in direct collaboration.
Léon took the lead in developing the VCG and the reification/reflection process, and
I took the lead in developing the logic and the symbolic executor.

Chapter 2 is heavily based on the background sections of the published papers,
but amalgamated together and expanded for the sake of presentation.

14

1.4. Contributions and outline

Coq sources. All the material presented in this thesis has been mechanized in the
Coq proof assistant. The Coq sources are available in the following Git repository
under the BSD license:

https://github.com/co-dan/thesis

A “frozen” version of is available under a persistent DOI: 10.5281/zenodo.4445839.
See also the appendix on “Research Data Management” for more details on the
associated Coq source code.

15

https://github.com/co-dan/thesis
https://doi.org/10.5281/zenodo.887578

2Background on separation

logic

In this chapter we introduce some preliminary materials on separation logic in
general and Iris specifically. As has been mentioned in the introduction, all of the
program logics presented in this thesis take the concurrent separation logic Iris as a
foundation on top which they are built.

Iris is a state-of-the-art concurrent separation logic framework with a flexible
mechanism for specifying protocols on shared state and a Coq mechanization al-
lowing one to write formal proofs in an easy manner. Iris, in all its generality, is
programming language independent, and can be instantiated with an arbitrary language
(for example, Rust [Jun+18a] or Scala’s core calculus DOT [Gia+20]). But by default
Iris comes equipped with a functional ML-like programming language HeapLang,
which supports general recursion, higher-order functions, dynamic references and
fork-based concurrency. It is an expressive programming language that we will use
throughout this thesis.

We begin this chapter with Section 2.1, in which we formally describe the syntax
and operational semantics of HeapLang. In Section 2.2 we describe the program logic
over HeapLang, focusing on sequential programs. To verify concurrent programs with
shared state, Iris includes a mechanism of invariants, which we describe in Section 2.3.
Invariants are used for reasoning about resources shared between different threads.
In order to further impose protocols on the way the resources are shared, invariants
are combined with custom ghost state theories, of which we give an overview in
Section 2.4. In Section 2.5 we briefly describe the Iris Coq formalization that we use
throughout this thesis. We finish the chapter with an overview of several different
ways to define custom separation logics on top of Iris in Section 2.6.

This chapter should serves as a basis which makes it easier to understand the rest
of the thesis. An interested reader is referred to the overview paper [Jun+18b] and
the lecture notes [BB20] to learn more about Iris.

2.1 Syntax and semantics of HeapLang

In this section we formally define the semantics of the programming language that we
will use throughout this thesis. This language is called HeapLang, and it is the default
language that comes with the Iris framework formalization in Coq. The syntax of

17

2. Background on separation logic

v ∈Val ::= i | ` | () (Integers i ∈ Z, locations ` ∈ Loc, unit value)

| true | false (Booleans)

| (v1,v2) (Pairs)

| inl (v) | inr (v) (Sums)

| rec f x = e (Recursive λ-functions)

~ ∈ BinOp ::= ∗ | + | − | . . . (Binary operations)

e ∈Expr ::= x | v | e1 e2 (Variables, values and function application)

| if e then e1 else e2 (Booleans)

| (e1, e2) | π1(e) | π2(e) (Pairs)

| inl (e) | inr (e) (Sums)

| (match e with inl (x)→ e1 | inr (x)→ e2)

| e1~ e2 (Binary operations)

| ref(e) | !e | e1← e2 (Heap operations)

| CAS(e1, e2, e3) | fork {e} (Concurrency and atomic primitives)

Figure 2.1: The syntax of the HeapLang language.

HeapLang is shown in Figure 2.1. HeapLang is untyped, although we consider type
systems for it in Chapters 4 and 5.

The standard operations on references are ref(e) for allocation, !e for dereferenc-
ing, and e1← e2 for assignment. The atomic compare-and-set operation CAS(e1, e2, e3)
checks if the value stored at the location e1 is equal to e2, and, if so, sets the value at
e1 to e3. The fork {e} construct creates a new thread, which will execute the expres-
sion e. The are no built-in synchronization constructs. Rather, constructs like locks
are defined using CAS(−,−,−) (as we will see in Section 2.4.2). Likewise, parallel
composition is defined using fork {−} (Section 2.4.1).

The construct rec f x = e is a recursive λ-function, whose body e can refer to the
function f itself and the argument x. As usual, function application associates to the
left: e1 e2 e3 is parsed as (e1 e2) e3.

Arrays in HeapLang are omitted in the thesis, but they are used in the Coq
mechanization.

Syntactic sugar. We use syntactic sugar to define non-recursive functions, let-
bindings, and sequential composition. We let (λx. e) , (rec _ x = e) and (let x =
e1 in e2) , ((λx. e2) e1) and (e1;e2) , (let _ = e1 in e2). The underscore _ denotes an
anonymous binder, i.e., a fresh variable that does not appear in the body of the
binding expression. We model option types with sum types. Thus, we write None for
inl (()) and Some(e) for inr (e), and we similarly overload the (match e with None→
e1 | Some(x)→ e2) construction.

18

2.1. Syntax and semantics of HeapLang

Pure reductions: e1→pure e2

(rec f x = e) v→pure e[v/x][rec f x = e/f] if true then e1 else e2→pure e1

if false then e1 else e2→pure e2 πi (v1,v2)→pure vi
match inl (v) with

inl (x)→ e1

| inr (x)→ e2

→pure e1[v/x]

match inr (v) with

inl (x)→ e1

| inr (x)→ e2

→pure e2[v/x]

~ ∈ {∗,+,−, . . . } i1, i2 ∈ Z i3 = i1~ i2
i1~ i2→pure i3

Thread-local call-by-value head-reduction (e,σ) −→h (e′ ,σ ′):

e1→pure e2

(e1,σ) −→h (e2,σ)

σ (`) =⊥
(ref(v),σ) −→h (`,σ [`←v])

σ (`) = v

(!`,σ) −→h (v,σ)

σ (`) = v

(`← v′ ,σ) −→h ((),σ
[
`←v′

]
)

σ (`) , v1

(CAS(`,v1,v2),σ) −→h (false,σ)

σ (`) = v1

(CAS(`,v1,v2),σ) −→h (true,σ [`←v2])

Thread-local reduction (e,σ) −→t (~e′ ,σ ′):

(e,σ) −→h (e′ ,σ ′)

(K[e],σ) −→t (K[e′],σ ′)
(K[fork {e}],σ) −→t (K[()] e,σ)

Thread-pool reduction (~e,σ) −→tp (~e′ ,σ ′):

(e,σ) −→t (~e′ ,σ ′)

(~e1 e ~e2,σ) −→tp (~e1 ~e′ ~e2,σ
′)

Figure 2.2: The operational semantics of HeapLang.

19

2. Background on separation logic

Whenever we want to define a recursive function, we often abuse the notation
and write

f x1 . . . xn = e for a definition f, (rec f x1 . . . xn = e).

Operational semantics. The operational semantics of HeapLang is call-by-value
and it involves several reduction relations: head reductions −→h, thread-local reduc-
tions −→t and thread-pool reductions −→tp. The reductions are defined in Figure 2.2.

Head reductions (e,σ) −→h (e′ ,σ ′) are defined on pairs of an expression e and a state
σ . A state is a finite partial map from locations to values Loc fin−−⇀Val. Among the head
reductions, some are pure reductions→pure, i.e., they are deterministic and do not
modify the state.

Head reductions −→h are lifted to thread-local reductions (e,σ) −→t (~e′ ,σ ′) using
standard call-by-value right-to-left evaluation contexts (in the style of Felleisen and
Hieb [FH92]):

K ∈ ECtx ::= [•] | e1 K | K v2 | e1~K | K ~ v2 | if K then e1 else e2

| (e1,K) | (K,v2) | πi(K)

| inl (K) | inr (K) | (matchK with inl (x)→ e1 | inr (x)→ e2)

| ref(K) | !K | e1← K | K ← v2

| CAS(e1, e2,K) | CAS(e1,K,v3) | CAS(K,v2,v3)

In addition, the thread-local reduction handles the fork {−} operation. That is why
the second component of the thread-local reduction contains a list ~e′ of expressions:
it consists of all the additional forked-off threads. Since the only way of creating a
new thread in HeapLang is the fork {−} operation, the second component thread-local
reduction contains either a single expression or two expressions.

Thread-local reductions are in turn lifted to thread-pool reductions (~e,σ) −→tp

(~e′ ,σ ′). Thread-pool reductions are defined on configurations ρ = (~e,σ) consisting
of a thread-pool ~e (a list of expressions corresponding to the threads) and a state σ .
Thread-pool reductions are defined by the interleaving semantics, i.e., by picking a
thread from the thread-pool and executing it, thread-locally, for one step.

We say than an expression e is reducible in state σ , if (e,σ) −→t (~e′ ,σ ′) for some
configuration (~e′ ,σ ′).

2.2 Basics of Iris

In this section we introduce the basics of Iris, mainly through its fragment used for
reasoning about sequential programs.

20

2.2. Basics of Iris

Syntax of Iris. The grammar of Iris propositions is as follows:

A,B ∈ Type ::= 0 | 1 | N |Val | Expr | Loc | iProp | A+B | A×B | A→ B | . . .
P ,Q ∈ iProp ::= True | False | P =⇒ Q (Intuitionistic logic)

| ∀x : A. P | ∃x : A. P | P ∧Q | P ∨Q | . . .
| P ∗Q | P −∗Q | ` 7→ v | wpE e {Φ} (Separation logic)

| P N | .P | �P | |VE1 E2 P | . . . (Iris-specific connectives)

Iris contains the usual connectives of intuitionistic higher-order logic like quantifiers
∀x. P (we usually omit the type annotations on quantifiers), conjunction P ∧ Q,
and so on. It also features the familiar separation logic connectives like separating
conjunction P ∗Q, magic wand P −∗ Q, and the points-to predicate ` 7→ v (where
` ∈ Loc is a HeapLang location and v ∈Val is a HeapLang value). We write ` 7→ − for
(∃v. ` 7→ v).

Iris also contains the later modality ., the persistence modality �, the update

modality |VE1 E2 , and the invariant assertion P
N

. We introduce these connectives
in passing throughout this section. Some of these connectives are annotated by
invariant masks E ⊆ InvName and invariant namesN ∈ InvName, which are needed for
bookkeeping related to Iris’s invariant mechanism. We will cover them more closely
when we discuss the invariant mechanism in Iris.

As a program logic, Iris features the weakest precondition connective wp e {Φ},
which states that reducing the expression e is safe, and whenever e reduces to some
value v, the value satisfies the postcondition Φ : Val→ iProp (see Theorem 2.1 for the
soundness statement of wp). We write wp e {v.Φ(v)} for wp e {λv.Φ(v)}. The weakest
precondition connective does not represent the preconditions that one find in Hoare
triples. Instead, these preconditions are encoded using the magic wand. For example,
the proposition

(`1 7→ v1 ∗ `2 7→ v2) −∗
(
wp (`1← w1; !`2) {v. v = v2}

)
, (2.1)

which can also be written without the superfluous parentheses as

`1 7→ v1 ∗ `2 7→ v2 −∗ wp (`1← w1; !`2) {v. v = v2},

states that under the precondition `1 7→ v1 ∗ `2 7→ v2 it is safe to execute the program
`1← w1; !`2, and after the execution the program returns v2.

Inference rules and derivability. As standard in logic, Iris has a derivability rela-
tion P `Q. Figure 2.3 presents a selection of Iris rules pertaining to the intuitionistic
logic connectives and separation logic connectives. The rules for other connectives
will be presented throughout this chapter.

We say that Q is derivable if True ` Q. In many situations, we use magic wand
−∗ instead of the derivability relation `, because Iris has the standard deduction
property:

P `Q −∗ R iff P ∗Q ` R

21

2. Background on separation logic

Intuitionistic logic:

P

P

P `Q Q ` R
P ` R

P

True

False

P

P ∧Q
P

P ∧Q
Q

P `Q P ` R
P `Q∧R

P

P ∨Q
Q

P ∨Q
P ` R Q ` R
P ∨Q ` R

P ∧Q ` R
P `Q =⇒ R

Separation logic:

P ∗ (Q ∗R)

(P ∗Q) ∗R
P ∗Q
Q ∗ P

P

True ∗ P
P1 `Q1 P2 `Q2

P1 ∗ P2 `Q1 ∗Q2

P ∗Q ` R
P `Q −∗ R

Figure 2.3: Selected rules of Iris.

Most of the inference rule we present can be internalized as Iris propositions by
a magic wand or a derivability relation between the separating conjunction of the
antecedents and the consequent. We thus use the following notations:

P1 · · · Pn
Q

is notation for (P1 ∗ · · · ∗ Pn) −∗Q,

P

Q
is notation for (P −∗Q)∧ (Q −∗ P).

For instance, the proposition in Equation (2.1) is presented as the following inference
rule:

`1 7→ v1 `2 7→ v2

wp (`1← w1; !`2) {v. v = v2}

We use the derivability relation ` to explicitly state the rules that cannot be

internalized, e.g.,
` P
`Q

states that if P is derivable, then Q is derivable. This is weaker

than
P

Q
, which denotes that P can be derived from Q, i.e., P `Q.

We would also like to note that Iris is an intuitionistic separation logic (also often
called affine separation logic) in the sense of [Rey02]. That is, Iris admits P ∗Q ` P , and
the predicate ` 7→ v holds in all heaps that contain at least the location ` with the
value v.

Coq logic and Iris. The full formal grammar of Iris is defined in a way that is usual
for typed higher-order logics parameterized over some signature. That is, the logic
includes terms of various types, equality predicates, and all the standard rules of
intuitionistic higher-order logic.

22

2.2. Basics of Iris

In practice (i.e., what happens in the Coq formalization) we view Iris as a superset
of Coq logic. Every Coq proposition is a proposition of Iris, and all the common
Coq types such as lists, trees, and other inductive types are types of Iris.1 We write
pφq : iProp for an embedding of the Coq propositionφ : Prop into Iris. The embedding
function p−q commutes with the intuitionistic connectives. On paper we omit the
embedding for common connectives like equality predicates, set membership, and so
on.

Soundness of Iris. Iris admits the following soundness theorem (stated and proved
in [Jun+18b, Theorem 6]), that connects derivability in Iris with operational semantics
of HeapLang:

Theorem 2.1. Let φ a Coq predicate over the type Val of HeapLang values. Suppose
that wp e {v. pφ(v)q} is derivable in Iris, and (e,σ) −→∗tp (e′1e

′
2 . . . e

′
n,σ
′). Then:

1. For any e′i (with 1 ≤ i ≤ n), either e′i is a value or e′i is reducible in σ ′ .

2. If e′1 is a value, then φ(e′1) holds.

There are other stronger variations of the soundness theorem in the Iris Coq
formalization and the accompanying documentation [Iri20], but the statement above
is the simplest one, and it will serve as the basis for the soundness statements of the
logics presented in the upcoming chapters of this thesis.

2.2.1 Weakest precondition calculus

The rules governing the wp e {Φ} connective are presented in Figure 2.4 (the later
modality . and the mask annotations E can be ignored for now and will be explained
in Sections 2.2.3 and 2.3). Most of the rules in that figure are symbolic execution rules
in the sense that they allow us to symbolically execute an expression e in a symbolic
heap which is described through the separation logic connectives. For example,
consider the rule wp-store; ignoring the . modality and the mask E (which will be
explained in Sections 2.2.3 and 2.3), it can be written as:

` 7→ v ` 7→ w −∗ Φ(())

wp `← w {Φ}

It says that in order to symbolically execute `← w, we need to provide a points-to
connective ` 7→ v saying that the location ` exists and we have the permission to
write to it. The expression `← w evaluates to (), hence at the end we need to prove
Φ(()). Recall that separation logic is substructural: when a user of the rule provides
` 7→ v as a precondition, they “give it up” and no longer have access to it. Instead, for
proving Φ(()) the user gets a new assumption ` 7→ w.

1Formally, treating a Coq type as an Iris type requires one to prove that the type has a structure of an
ordered family of equivalences (OFE). This technicality is due to Iris’s step-indexed model, which is out of
the scope for this thesis.

23

2. Background on separation logic

wp-val

Φ(v)

wpE v {Φ}

wp-bind

wpE e
{
v.wpE K[v] {Φ}

}
wpE K[e] {Φ}

wp-wand

wpE e {Ψ } (∀v.Ψ (v) −∗ Φ(v))

wpE e {Φ}

wp-pure

e→pure e
′ .wpE e

′ {Φ}
wpE e {Φ}

wp-alloc

∀` ∈ Loc. ` 7→ v −∗ .Φ(`)

wpE ref(v) {Φ}

wp-load

.`
q7−→ v .(` q7−→ v −∗ Φ(v))

wpE !` {Φ}

wp-store

.` 7→ v .(` 7→ w −∗ Φ(()))

wpE `← w {Φ}

wp-cas-fail

.` 7→ w w , v1 .(` 7→ w −∗ Φ(false))

wpE CAS(`,v1,v2) {Φ}

wp-cas-suc

.` 7→ v1 .(` 7→ v2 −∗ Φ(true))

wpE CAS(`,v1,v2) {Φ}

wp-fork

wp e {_. True} Φ(())

wpE fork {e} {Φ}

wp-upd

|VEwpE e {v. |VEΦ(v)}
wpE e {Φ}

wp-atomic

atomic(e) |V> EwpE e
{
v. |VE >

Φ(v)
}

wp e {Φ}

Figure 2.4: Weakest precondition rules.

The weakest precondition rules in Iris are given in what is called a “backwards”
style [IO01; Rey02]. Contrast the presented wp-store rule with an equivalent one:

` 7→ v

wp `← w
{
v′ . v′ = () ∗ ` 7→ w

}
This “backwards” style may seem inside-out at first, but it is quite intuitive when
reasoning from conclusion to assumptions, as is usually done in proof assistants like
Coq. To demonstrate this backwards style reasoning, consider an example where the
assignment expression appears as part of a larger program.

Proposition 2.2. The following proposition (Equation (2.1)) holds:

`1 7→ v1 ∗ `2 7→ v2 −∗ wp (`1← w1; !`2) {v. v = v2}.

Proof. In this proof we will ignore the later modality .; we will return to it later in
Section 2.2.3.

We have to prove
wp (`1← w1; !`2) {v. v = v2}

24

2.2. Basics of Iris

llnil () = None

llhead l = match l with

| None→ false

| Some(h,_)→ h

llcons x l = Some(x, l)

lltail l = match l with

| None→ false

| Some(_, t)→ t

Figure 2.5: Purely functional linked lists.

under the assumptions `1 7→ v1 and `2 7→ v2. We start by applying wp-bind with
K = [•]; !`2. Our new goal becomes

wp `← w1 {v.wp (v; !`2) {v. v = v2}},

with the assumptions unchanged.
We then apply wp-store, feeding `1 7→ v1 as a premise. After that it remains to

show `1 7→ w1 −∗ wp ((); !`2) {v. v = v2} under the assumption `2 7→ v2. Or, equivalently,
by introduction of −∗, it remains to show

wp ((); !`2) {v. v = v2}

under the assumptions `1 7→ w1 and `2 7→ v2.
By applying wp-pure we can reduce the goal to wp !`2 {v. v = v2}. After which we

apply wp-load with `2 7→ v2 as the assumption. It remains to show v2 = v2.

2.2.2 Representation predicates

In separation logic, specification are often expressed in terms of representation predi-
cates, which establish relationships between logical data representation (e.g., a math-
ematical list) and data representation in the programming language (e.g., a linked
list encoded in HeapLang). Iris supports defining representation predicates though
all the facilities of Coq and higher-order logic; in particular, giving definitions by
recursion. Let us demonstrate the usage of representation predicates in Iris on an
example. Consider an implementation of purely functional linked lists given in
Figure 2.5. The implementation provides a rather simple example, but we will use it
to demonstrate some of the main concepts of Iris.

The lists are represented using option types with None being the empty list and
Some(h, t) being the list with the head h and the tail t. On the level of the logic, we
represent lists with the predicate is_list(v, ~w) : iProp which says that the linked list v
represents a mathematical list (that is, a Coq-level list) ~w of values. This predicate is
defined by recursion on the list ~w:

is_list(v, ~w),

v = None if ~w is ε

v = Some(w0, t) ∗ is_list(t, ~w′) if ~w = w0 :: ~w′

25

2. Background on separation logic

Using this predicate we prove the following specifications for the linked list
functions:

wp-llnil

wp llnil () {v. is_list(v,ε)}

wp-llcons

is_list(t, ~w)

wp llcons h t
{
v. is_list(v,h :: ~w)

}
wp-llhead

is_list(v,h :: ~w)

wp llhead v
{
v′ . (v′ = h) ∗ is_list(v,h :: ~w)

} wp-lltail

is_list(v,h :: ~w)

wp lltail v
{
v′ . is_list(v′ , ~w)

}
islist-dup

is_list(v, ~w)

is_list(v, ~w) ∗ is_list(v, ~w)

The rule islist-dup is proven by induction on ~w. All other specifications are proven by
examining the definition of is_list and using wp-pure.

The specifications that we gave exposes the is_list predicate and its definition. We
could go further and turn is_list into an abstract predicate [PB05] using existential
quantification [BBT07], thus hiding its definition from the clients, as described in
[BB20, Section 4.2]. However, we do not do this in practice, as dealing with existen-
tially quantified predicates introduce additional overhead. In the Coq formalization
we just take extra care to make sure that whenever we verify a client of the linked list
module, we do not appeal to the definition of the is_list predicate, but only to the
associated proof rules.

2.2.3 Recursion and later modality

The rules in Figure 2.4 and the invariant rules feature the later modality .. This
modality is customary in logics based on step-indexing [AM01; Nak00] and it has
multiple uses in Iris. In this subsection we describe how to use the later modality for
verifying recursive programs.

The key rules for the . modality are:

.-intro
P

.P

.-mono
P `Q
.P ` .Q

Löb

.P ` P
` P

.-sep
.(P ∗Q)

.P ∗ .Q

.-forall
∀x. .P
.∀x. P

.-exists
.∃x : A. P A is inhabited

∃x : A. .P

Furthermore, the . modality distributes over intuitionistic conjunction and disjunc-
tion, and existential quantification over inhabited types.

Löb induction is encoded in the rule Löb: it allows to prove some goal P using
.P as an induction hypothesis. Löb induction can be used to prove correctness of
recursive programs, as demonstrated by the following proposition.

26

2.2. Basics of Iris

Proposition 2.3. Let Ω = (λx. x x)(λx. x x). The following proposition is derivable:

wp Ω {_. False}.

Proof. By application of Löb it suffices to show

.wp Ω {_. False} ` wp Ω {_. False}.

Note that Ω→pure Ω; hence we can apply wp-pure to get a new goal

.wp Ω {_. False} ` .wp Ω {_. False},

which holds trivially.

The proposition that we just proved might seem strange, because of the postcon-
dition False. However, Iris is a program logic for proving partial correctness, that is,
the postcondition requires to hold whenever the program terminates, but there is no
requirement for the program to terminate.

Löb induction is useful for proving specifications for recursive programs that are
not infinite loops. Consider the following function that we add to the linked list
module in Figure 2.5:

llmember x l = match l with

| None→ false

| Some(h, t)→ if h = x then true

else llmember x t

The function goes through the linked list l looking for the element x. We can give it
the following specification:

wp-llist-member

is_list(l, ~w)

wp llmember x l

b. is_list(l, ~w) ∗
((b = true) ∗ ∃i. wi = x)∨
((b = false) ∗ ¬(∃i. wi = x))

Since llmember is a recursive function, we can use Löb induction to prove it.2

Proposition 2.4. The rule wp-llist-member holds.

Proof. Let us use a shorthand

Ψ (b), is_list(l, ~w) ∗ (((b = true) ∗ ∃i. wi = x)∨ ((b = false) ∗ ¬(∃i. wi = x))) .

By Löb induction it suffices to prove

is_list(l, ~w) −∗ wp llmember x l {Ψ }
2In this particular case we can get away with doing induction on the length of the list. However, in

general we might not have a measure that is decreasing at a recursive call. We will treat one such example
in Section 2.4.2.

27

2. Background on separation logic

for arbitrary l, ~w under the assumption

.(∀l, ~w. is_list(l, ~w) −∗ wp llmember x l {Ψ }).

By applying wp-pure we can contract the beta-redex and get a goal

.wp

match l with

| None→ false

| Some(h, t)→
if h = x then true

else llmember x t

{Ψ }

under the assumptions

.(∀l, ~w. is_list(l, ~w) −∗ wp llmember x l {Ψ }) ∗ is_list(l, ~w).

Using .-intro and distributivity of . over ∗ we can rewrite the assumption as a single
formula behind the . modality:

.
(
(∀l, ~w. is_list(l, ~w) −∗ wp llmember x l {Ψ }) ∗ is_list(l, ~w)

)
.

At this point both our goal and our hypothesis are behind the . modality; hence we
can apply .-mono to get rid of the . modality on both sides.

We then proceed further by symbolic execution using wp-pure (and .-intro when-
ever necessary). We need to consider several cases:

1. The list l is None. Then ~w is ε and Ψ (false) holds.

2. The list l is Some(x, t). Then ~w contains x at the head position and Ψ (true)
holds.

3. The list l is Some(h, t) with h , x. Then the goal reduces to

wp llmember x t {Ψ }.

Since we have is_list(t, ~w′), where ~w′ is the tail of the list ~w, we can solve this
goal by applying the rule wp-wand and using induction hypothesis.

2.2.4 Persistence modality

The weakest precondition connective in Iris is a first-class citizen, and it can be
combined with other propositions through all the logical connectives. We have
already seen the weakest precondition appear on the right-hand side of the magic
wand, but in general the weakest precondition can appear at any place in a separation
logic formula. This is especially useful for specifying and verifying higher-order

28

2.2. Basics of Iris

functions. As an example, consider the following addition to the list module in
Figure 2.5:

llfilter f l = match l with

| None→ llnil ()

| Some(h, t)→ if f h then llcons h (llfilter f t)

else llfilter f t

The function llfilter f l iterates over the list l, executing f x for each element x of
the list, keeping only those elements for which f x returns true. In order to specify
llfilter f l we might want to require that the function f satisfies some specification of
the form (∀v.wp f v {v′ . (v′ = true ∗ P (v))∨ (v′ = false)}. However, recall that separa-
tion logic is substructural— if we require this specification for f as an assumption,
then we can only use it once, despite the fact that for execution of llfilter f l we have
to execute f multiple times. To address this issue, we require the specification for f
to be persistent.

Intuitively, a proposition is persistent if, once established, it will remain valid for
the rest of the verification. The notion of persistence is expressed in Iris through the
persistence modality �. A proposition P is persistent if P `�P holds. The persistence
modality satisfies the following rules:

�-dup

�P ∗�P
�P

�-elim

�P
P

�-mono

P `Q
�P `�Q

�-idemp

�P
��P

�-True

True

�True

�-conj

�P ∧Q
�P ∗Q

�-sep

�P ∗�Q
�(P ∗Q)

�-.
�.P

.�P

�-forall

∀x. �P
�∀x. P

�-exists

�∃x. P
∃x. �P

The rules �-dup and �-elim say that the �P is duplicable, and one can get the proposi-
tion out of the persistence modality. The rule �-idemp says that �P itself is persistent.
The rules �-elim, �-mono and �-idemp say that � is in fact a co-monad. The rules �-

conj and �-. dictate the interaction of the persistence modality with conjunction and
the later modality. Finally, � commutes with some logical connectives like separating
conjunction (�-sep), the later modality (�-.), as well as universal and existential
quantification (�-forall and �-exists). By �-True and �-mono, from a closed proof
` P of P we can obtain a closed proof `�P of �P .

Examples of persistent propositions include pure propositions (that is, proposi-
tions involving only intuitionistic logic connectives) and invariants, which we will
encounter in Section 2.3.

Using the persistence modality we can then formulate a proper specification3 for

3This particular specification can be strengthened by using the assumption(∗v∈~wwp f v
{
v′ . (v′ = true ∗ P (v))∨ (v′ = false)

})
instead of the currently present assumption

� (∀v.wp f v
{
v′ . (v′ = true ∗ P (v))∨ (v′ = false)

}
). However, the specification that we give is still

useful; and the usage of the persistence modality for specifying higher-order function is idiomatic for
logical relations models that will be presented in Chapters 4 and 5.

29

2. Background on separation logic

mset_create () = ref(llnil ())

mset_member x v = let l = !v in llmember(x, l)

mset_add x v = let l = !v in v← llcons x l

mset_clear v = v← llnil ()

Figure 2.6: Implementation of mutable sets.

llfilter:
wp-llfilter

� (∀v.wp f v
{
v′ . (v′ = true ∗ P (v))∨ (v′ = false)

}
) is_list(l, ~w)

wp llfilter f l

v′ . ∃ ~w′ . is_list(v′ , ~w′) ∗ ∗
w′i∈ ~w′

P (w′i)

This specification is proven using Löb induction and the rules for the � modality.

2.2.5 Stacking representation predicates

To see how the specification for linked lists can be used in practice, we will derive an
specification for a small library of mutable sets (which we will use in Chapter 3), and
define the representation predicate for mutable sets in terms of the representation
predicate for lists.

An implementation of mutable sets using linked lists is given in Figure 2.6. A
mutable set v is just a reference pointing to a linked list, whose elements comprise
the contents of the set. All the operations querying and updating the set go through
the list interface.

Using the specification for lists from the previous sections we can derive the
specification for mutable sets as given in Figure 2.7. To prove the rules in that
specification, we instantiate the predicate is_mset as follows:

is_mset(v,X), ∃hd, ~w, `. (v = `) ∗ ` 7→ hd ∗ is_list(hd, ~w) ∗
no_dup(~w) ∗ (X = list_to_set(~w))

We use an auxiliary function list_to_set : List(Val)→ ℘(Val) which converts a list of
values to a set of values (ignoring the order), and an auxiliary predicate no_dup :
List(Val)→ iProp, which asserts that the list has no duplicates.

Let us show how to define one of the rules for mutable sets.

Proposition 2.5. The rule wp-mset-clear holds.

Proof. Suppose that is_mset(v,X) hold. Then, v = ` and X = list_to_set(~w) for some
`, ~w. Furthermore, is_list(hd, ~w) and ` 7→ hd for some hd. The goal is

wp (`← llnil ())
{
v′ . v′ = () ∗ is_mset(`,∅)

}
.

30

2.3. Invariants in Iris

wp-mset-create

wp mset_create () {v. is_mset(v,∅)}

wp-mset-clear

is_mset(v,X)

wp mset_clear v
{
v′ . v′ = () ∗ is_mset(v,∅)

}
wp-mset-add

is_mset(v,X) x < X

wp mset_add x v
{
v′ . v′ = () ∗ is_mset(v, {x} ∪X)

}
wp-mset-member

is_mset(v,X)

wp mset_member x v
{
b. is_mset(v,X) ∗

(
(b = true ∗ x ∈ X)∨ (b = false ∗ x < X)

)}
Figure 2.7: Mutable sets specification.

By wp-bind it suffices to prove

wp llnil ()
{
v.wp (`← v)

{
v′ . v′ = () ∗ is_mset(`,∅)

}}
.

Note that for llnil we have the rule wp-llnil: wp llnil () {v. is_list(v,ε)}. Thus, by wp-

wand we have to prove

∀v. is_list(v,ε) −∗ wp (`← v)
{
v′ . v′ = () ∗ is_mset(`,∅)

}
.

We do this by symbolically executing the assignment, exchanging the assumption
` 7→ hd for ` 7→ v. The return value of the assignment is always (); so, to prove the
postcondition, we have to establish is_mset(`,∅). The latter can be done by unfolding
the definition of is_mset and noting that list_to_set(ε) = ∅.

The other specifications can be proven similarly.

2.3 Invariants in Iris

The rules of separation logic presented so work nicely for sequential programs. But
the goal of a concurrent separation logic is to bring local reasoning to multi-threaded
programs that operate on shared state. In order to share resources between different
threads, Iris includes the mechanism of invariants. Invariants in Iris are not attached
to particular synchronization primitives like locks or critical regions. Instead, invari-
ants in Iris exist “on their own”, and the resources shared via such invariants can be
accessed by any thread, but only for the duration of a single reduction step. However,
more standard rules for sharing resources through synchronization primitives can be
derived from the Iris invariants (we will see an example of that in Section 2.4.2).

To explain the invariant mechanism in Iris, let us start with an example. Consider
the following program:

prog1 , let x = ref(0) in

fork {x← 1} ;
!x

31

2. Background on separation logic

We want to prove that prog1 returns either 0 or 1. We can try proving this by
symbolically allocating the location x to get a predicate x 7→ 0. Then, we might wish
to apply wp-fork; we would be left with the following goal:

x 7→ 0 −∗
((

wp (x← 1) {_. True}
)
∗
(
wp ((); !x) {x 7→ 0∨ x 7→ 1}

))
.

We would have to prove two weakest precondition connectives: one for the forked-off
thread, and one for the main thread. Both of the threads require access to the resource
x 7→ 0. However, as it stands, we cannot share the resource x 7→ 0 across the two
weakest preconditions joined by the separating conjunction.

In order to share the points-to predicate x 7→ 0 between the main thread of prog1
and the forked-off thread, we will use the Iris invariants. Invariants in Iris are
propositions of the form P

N
, which allow the user to share P between different

threads, as long as all the operations in all of the threads respect P (the role of

invariant namesN is discussed later in Section 2.3.1). Invariants P
N

are persistent:

P
N `� P

N
. So, invariant propositions are duplicable (via �-dup) and can be shared

across separating conjunction. Additionally, we will make use of the following rules
for invariants:

wp-inv-alloc

.P (P
N −∗ wpE e {Φ})

wpE e {Φ}

wp-inv-access

atomic(e) P
N

.P −∗ wpE\N ↑ e {v. .P ∗Φ(v)}

wpE e {Φ}

The first rule wp-inv-alloc allows us to allocate the resources P into an invariant P
N

,
which then can be used for proving the program e. The second rule wp-inv-access

allows us to temporarily access the contents of the invariant P
N

while performing
an atomic operation e. An operation is atomic (denoted as atomic(e)) if it reduces to
a value in one step. Examples of atomic operations are assignment, dereferencing,
compare-and-set, and so on. Because an atomic operation takes exactly one step of
execution, no other thread can be interleaved with it. This makes it sound to access
and temporarily break an invariant, for a duration of an atomic operation.

Invariants in Iris are impredicative [SB14; Jun+18b]. That is, the proposition

P in the invariant P
N

can itself contain another invariant assertion Q
N ′

. As a
consequence, to ensure soundness of the logic, all rules for invariants only provide
access to .P , i.e., P guarded by the later modality .. To still be able to use such
guarded resources in symbolic execution rules in Figure 2.4, the premises of those
rules are also guarded, i.e., the premise .` 7→ v in wp-store.

Let us see how those invariant rules are used to prove the specification for prog1.

Proposition 2.6. The following proposition holds: wp prog1 {v. v = 0∨ v = 1}.

Proof. We start by applying the rule wp-alloc, after which we have to prove

wp (fork {x← 1} ; !x) {v. v = 0∨ v = 1}

under the assumption x 7→ 0, for some arbitrary location x.

32

2.3. Invariants in Iris

We apply wp-inv-alloc picking the invariant to be x 7→ 0∨ x 7→ 1
N

. Clearly, we
can establish (x 7→ 0 ∨ x 7→ 1) from x 7→ 0. Then we apply wp-bind and wp-fork,
obtaining two new goals:

1. wp x← 1 {_. True}
2. wp ((); !x) {v. v = 0∨ v = 1}

Since the location x is now shared in the invariant, we can use the assumption

x 7→ 0∨ x 7→ 1
N

to prove both of those goals.
For the first goal we apply wp-inv-access, reducing it to the following (ignoring

the later modality . for now):

(x 7→ 0∨ x 7→ 1) −∗ wp>\N ↑ (x← 1) {_. x 7→ 0∨ x 7→ 1}.

That is, we have to show that executing x← 1 preserves the invariant that we have
established. Proving this goal is a matter of case analysis on the disjunction and
applying wp-store.

Similarly, we prove the second goal by applying wp-pure, wp-inv-access and wp-load.
During the symbolic execution operation we gain access to the invariant and thus
know that whatever value we dereference from x will be either 0 or 1.

2.3.1 Namespaces and masks

A crucial aspect of the invariant mechanism is that an invariant P
N

cannot be

opened twice: that would not be sound.4 For example, if we could open ` 7→ v
N

twice in a row, we would get access to ` 7→ v ∗ ` 7→ v, which is a contradiction because
one cannot own the same location twice.

To enforce that invariants can only be opened once, the invariant proposition P
N

is tagged with a namespaceN ∈ InvName, and the weakest precondition connective
wpE e {Φ} is annotated with a mask E ⊆ InvName of potential invariants that can
be opened. By default, all invariants are accessible for the weakest precondition
connective, so we write wp e {Φ} for wp> e {Φ} where > is the largest mask (the set
InvName itself).

An invariant namespace is a (non-empty) list of strings or values: InvName =
List(String + Val). When opening an invariant (e.g., using wp-inv-access) with the
namespaceN and removing it from the mask on the weakest precondition (E \N ↑),
we coerce the namespace N into a mask by taking its upwards extension: N ↑ =
{N x1 . . .xn | n ∈ N, xi ∈ String +Val}.

2.3.2 Invariants and the update modality

The rules for the invariants that we have presented so far are fairly limited: they
only allow to open an invariant when proving a weakest precondition proposition
and they only allow to open one invariant at a time. In truth, the rules wp-inv-alloc

and wp-inv-access are not primitive rules of Iris but are derived from the primitive

4This sometimes is referred to as a reentrancy issue of the invariant mechanism.

33

2. Background on separation logic

invariant rules and wp-upd and wp-atomic, by using the update modality |VE1 E2 . The
intuition behind |VE1 E2 P is to express that under the assumption that the invariants
in E1 are accessible initially, one can obtain P , and end up in the situation where the
invariants in E2 are accessible. Thus, for showing P we can open the invariants from
E1 and have to restore the invariants from E2 (the invariants from E1 \ E2 may remain
open). Furthermore, this modality allows one to perform changes to Iris’s ghost state,
as we will see in Section 2.4.

The key rules of the update modality are:

|V-intro

P

|VE E P

|V-mono

P `Q
|VE1 E2 P ` |VE1 E2Q

|V-idemp

|VE1 E2 |VE2 E3 P

|VE1 E3 P

|V-sep

P ∗ |VE1 E2Q

|VE1 E2 (P ∗Q)

These rules say that the update modality is a strong indexed monad. To use the
update modality in practice we have the following derived rule:

|V-elim

|VE1 E2 P P −∗ |VE2 E3Q

|VE1 E3Q

This rule is derivable from |V-mono, and |V-idemp, and we refer to the application of
this rule as eliminating the update modality.

For convenience we have the following notations. We write |VE for |VE E , and we
write |V for |V> . We write P E1 E2 Q for P −∗ |VE1 E2Q, with a similar convention for
the mask annotations.

The following rules connect the invariants with the update modality:

inv-alloc

.P

|VE P
N

inv-access

N ↑ ⊆ E P
N

|VE E\N ↑ .P ∗ (.P E\N
↑ E True)

As one can check, using |V-elim and |V-intro we can derive wp-inv-alloc from inv-alloc

and wp-upd, and we can derive wp-inv-access from inv-access and wp-atomic.

2.4 Custom ghost state in Iris

The invariant mechanism of Iris is especially powerful when combined with Iris’s
facilities for defining custom ghost state. Ghost state (also known as auxiliary state) is
dubbed so in contrast with the physical state of the program, like (parts of) the heaps.
Unlike physical state, ghost state is a purely logical construct, which is not a priori
related to the behavior of the program, but is introduced only for the purposes for
specification and verification of the program.

Iris supports custom, user-defined ghost state theories encoded using resource
algebras [Jun+16]. The details on the encoding of ghost state using resource algebras
can be found in [Jun+18b, Section 3] and [BB20, Section 7.4]. In this thesis we will

34

2.4. Custom ghost state in Iris

not give encodings of any custom ghost state theories, but rather present the ghost
theories “as is”, in terms of the abstract predicates and the associated proof rules. An
interested reader is referred to the Coq formalization for the details on how those
ghost theories are defined.

In the rest of this section we present examples of two custom ghost state theories,
and demonstrate how to use them for reasoning about concurrent programs.

2.4.1 Parallel composition

Consider the following implementation of parallel composition operation using the
fork {−} operation:

join x = match !x with Some(v)→ v

| None→ join x

par f1 f2 = let x = ref(None) in

fork {x← Some(f1 ())} ;
let v2 = f2 () in (join x,v2)

We use the notation e1 ||e2 to denote par (λ_. e1) (λ_. e2). The e1 ||e2 expression spawns
a new thread for executing e1 and storing its result in a local reference x. The main
thread then proceeds to execute e2, and, when this execution is completed, it waits
for the spawned thread to write the result to x.

We wish to give the standard separation logic specification to this parallel compo-
sition operation:

wp-par

wp e1 {Ψ1} wp e2 {Ψ2} (∀v1 v2.Ψ1(v1) ∗Ψ2(v2) −∗ Φ((v1,v2)))

wp e1 || e2 {Φ}

In order to prove wp-par, the location x has to be shared between the two threads.
Furthermore, the location x has to satisfy the following protocol: either it contains
None (the expression e1 is not computed), or it contains Some(v1) with v1 satisfying
the predicate Ψ1 (the expression e1 has been computed). Moreover, we want to ensure
that once the spawned thread computes the expression e1 to a value v1 satisfying Ψ1,
the cumulative resources Ψ1(v1) can be transferred to the original thread.

To that extent we introduce the a custom ghost state theory that contains a
predicate tokenγ that satisfies the following rules:

new-token

|VE ∃γ. tokenγ

token-excl

tokenγ tokenγ
False

This ghost theory contains a single proposition token (indexed by a ghost name
γ ∈ GName). This proposition is exclusive, i.e., only one such proposition can exist, as
witnessed by token-excl. Moreover, a new tokenγ with a “fresh” ghost name can be
allocated using new-token.

35

2. Background on separation logic

To prove wp-par we will use the following invariant:

I||(γ,x) = x 7→ None∨∃v. x 7→ Some(v) ∗ (Ψ1(v)∨ tokenγ)
N
.

It says that either x contains None, or x contains Some(v). In the later case the
invariant either owns the resources Ψ1(v) or an exclusive token tokenγ . The None

branch corresponds to the situation when the forked-off thread has not finished the
computation yet. The Some(v) case corresponds to the situation when the forked-off
thread has finished a computation with a value v. Furthermore, the computation
that the forked-off thread has performed satisfies the predicate Ψ1(v). Either this
predicate is in the invariant, or it has been taken out by the main thread in exchange
for the token tokenγ .

This invariant allows us to prove the following useful lemma for join:

Lemma 2.7. The following proposition holds:

I||(γ,x) ∗ tokenγ −∗ wp join x {Ψ1}

for any γ , x.

Proof. By Löb induction we can assume .(I||(γ,x) ∗ tokenγ −∗ wp join x {Ψ1}). Using
wp-pure we can contract the beta-redex, and get rid of the . modality, reducing our
goal to:

(tokenγ −∗ wp join x {Ψ1}) ∗ tokenγ −∗ wp (match !x with . . .) {Ψ1}.

We use wp-atomic and wp-load to symbolically dereference x. There are two cases to
consider.

1. We get x 7→ None out of the invariant. In this case we can readily close the
invariant and use wp-pure to “restart” the computation of join. At this point we
just appeal to the induction hypothesis, which we can use because we have not
spent the resource tokenγ .

2. We get x 7→ Some(v) for some v our of the invariant. Furthermore, we get
Ψ1(v)∨ tokenγ out of the invariant as well. Since we have tokenγ , we note that
the second disjunct is inconsistent with our assumptions. Indeed, were we able
to get tokenγ out of the invariant, we would have two copies of tokenγ , which
is impossible by token-excl. Hence it must be the case that Ψ1(v).
Then we close the invariant by exchanging this resource Ψ1(v) for tokenγ which
we have. Then we just apply wp-pure and obtain the desired goal.

Using this lemma we can verify the rule wp-par:

Proposition 2.8. The rule wp-par is sound.

Proof. Suppose wp e1 {Ψ1} and wp e2 {Ψ2}. By symbolic execution, using wp-pure and
wp-alloc it suffices to show

wp

fork {x← Some((λ_. e1) ())} ;
let v2 = (λ_. e2) () in

(join x,v2)

 {Φ}.
36

2.4. Custom ghost state in Iris

under the assumption x 7→ None for an arbitrary location x. At this point we can
use wp-upd and new-token to allocate a new token tokenγ for a fresh γ ∈ GName. We
can then use inv-alloc to establish the invariant I||, using the points-to connective
x 7→ None.

We then apply wp-bind and wp-fork, and get two new goals:

wp (x← Some((λ_. e1) ())) {_. True} ∗ wp (let v2 = (λ_. e2) () in (join x,v2)) {Φ}.
We can share the invariant I|| between both goals, and we use tokenγ to show the
second goal.

For the first goal we use wp-pure to reduce it to wp (x← Some(e1)) {_. True}. We
then use our assumption wp e1 {Ψ1}, in combination with wp-bind and wp-wand to
reduce the goal to showing Ψ1(v1) −∗ wp (x ← Some(v1)) {_. True} for an arbitrary
v1. We can prove this goal by using wp-atomic and wp-store. Because we have the
resources Ψ1(v1) we can successfully “close” the invariant by picking the correct
disjunct.

For the second goal, after applying wp-pure we have to show

tokenγ −∗ wp (let v2 = e2 in (join x,v2)) {Φ}.
Similarly to the first goal, we appeal to the assumption wp e2 {Ψ2} and wp-bind, wp-

wand to show
tokenγ ∗Ψ2(v2) −∗ wp (join x,v2) {Φ}

for an arbitrary v2. This goal then follows from Lemma 2.7 and the assumption
(∀v1 v2.Ψ1(v1) ∗Ψ2(v2) −∗ Φ((v1,v2))).

2.4.2 Spin lock

Another use of the ghost theory from Section 2.4.1 is for specification of locks. The
desired specification is presented in Figure 2.8, and it is formulated in a style of
iCAP [SB14] or [HAN08]. Locks prevent simultaneous access to some resources. We
can think of it as locks “owning” resources in the same way that threads can own
them. The specification we give allows for dynamic creation of locks: when a new lock
is created with the newlock function, we associate a predicate is_lock(γ, lk,R) with it.
The predicate says that the lock lk has a ghost name γ and controls the resources R.
When symbolically execute the newlock function, we have to transfer the resources R
into the lock, as per wp-newlock. When a client enters a critical section by calling the
acquire function, it obtains those resources R as well as a token locked(γ) signifying
the ownership of the critical section. Both R and locked(γ) have to be given up when
a client exists a critical section upon invoking release.

The lock specification in Figure 2.8 can be proven for many different kinds of
locks. However, for this example we take a simple spin lock implementation that
adheres to the specification. The implementation is defined as follows:

newlock () = ref(false)

acquire lk = if CAS(lk, false,true) then ()
else acquire lk

release lk = lk← false

37

2. Background on separation logic

wp-newlock

R (∀γ lk. is_lock(γ, lk,R) −∗ Φ lk)

wp newlock () {Φ}
is_lock(γ, lk,R)

� is_lock(γ, lk,R)

locked(γ) locked(γ)

False

wp-acquire

is_lock(γ, lk,R) (R ∗ locked(γ) −∗ Φ(()))

wp acquire lk {Φ}

wp-release

is_lock(γ, lk,R) R locked(γ) Φ(())

wp release lk {Φ}

Figure 2.8: Specification for locks.

A spin lock consists of a single reference lk to a boolean. If the boolean is false, then
the lock is in the unlocked state; if the boolean is true then someone is using a lock.

In order to acquire the lock, a thread repeatedly tries to atomically change the
value of the reference lk from false to true. If a thread does not succeed in doing
so, then another thread must be currently using the lock, and the original thread
remains spinning on the location lk.5

To release the lock, a thread just sets the value of lk to false. There is no race
on the location lk at this point, because we only expect only one thread calling the
release function.

We can verify the specifications in Figure 2.8 against the spin lock implementation
by picking the following definitions for representation predicates, using the custom
ghost state theory from the previous subsection:

is_lock(γ,v,R), ∃N . ∃lk ∈ Loc. v = lk ∗
∃b ∈ B. lk 7→ b ∗ (b = true∨ locked(γ) ∗R)

N

locked(γ), tokenγ

As an example, let us go through the proof of one of the rules.

Proposition 2.9. The rule wp-acquire for the spin lock implementation.

Proof. By Löb induction, we can assume the induction hypothesis:

.
(
is_lock(γ, lk,R) ∗ (R ∗ locked(γ) −∗ Φ(())) −∗ wp acquire lk {Φ}

)
.

5In practice, implementations for spin locks also use some sort of time out mechanism to avoid
aimlessly being in a busy loop, see [HS08, Chapter 7]. However, the presence or absence of such time
outs is irrelevant in our case because from the point of view of the program behavior, busy waiting is
indistinguishable from busy waiting interleaved with time outs.

38

2.4. Custom ghost state in Iris

pending
(x 7→ −)

shot
(x 7→ 0∨ x 7→ 1)

Figure 2.9: "One shot" transition system.

We can get rid of the . by symbolically executing the goal wp acquire lk {Φ}. At
the point of the CAS(lk, false,true) operation, we open the invariant (which is given
through the predicate is_lock(γ, lk,R)) and consider two possible scenarios:

1. If b = true, then the CAS operation fails. We close the invariant and proceed by
symbolic execution, until we can apply the induction hypothesis.

2. If b = false, then the CAS operation succeeds. We can take out the resources
locked(γ) and R from the invariant, before closing it. We then simply apply one
of the premises of the rule: R ∗ locked(γ) −∗ Φ(()).

2.4.3 Transition systems as protocols

For the next example, consider the program prog2, which is a slight modification of
the program prog1 from Section 2.3:

let x = ref(2) in

fork {x← 1} ;
x← 0;

!x

We should be able to prove that prog2, just like prog1 returns either 0 or 1. Unfortu-

nately, we cannot use the same invariant x 7→ 0∨ x 7→ 1
N

, because in its initial state
the location x contains 2. So we would not be able to establish this invariant at the
beginning!

To prove that prog2 returns either 0 or 1 we need to establish a stronger protocol
on the location x. What we want to say is that initially the location x is arbitrary, but
by the time we reach the dereferencing !x, the value store in x falls within the set {0,1}.
Furthermore, once the value of x becomes an element of {0,1} it stays within this set
of possible values. This can be visualized as the transition system in Figure 2.9. The
transition system can be encoded using the following ghost theory:6

new-pending

|V∃γ. pendingγ

pending-not-shot

pendingγ shotγ
False

shot-persistent

shotγ
�shotγ

pending-shoot

pendingγ
|Vshotγ

The predicate pendingγ corresponds to the initial state and the predicate shotγ
corresponds to the terminal state. The state can be changed from pendingγ to shotγ

6This ghost theory is implemented with the “oneshot” algebra from [Jun+18b, Section 2.1.].

39

2. Background on separation logic

(pending-shoot). Because shot is a final state, the corresponding resource shotγ is
persistent (shot-persistent): this corresponds to the fact that once the protocol ends in
the state shot it cannot evolve further.

Using this ghost theory we can formulate an invariant for proving the specification
for prog2.

Proposition 2.10. The following proposition holds:

wp prog2 {v. v = 0∨ v = 1}

Proof. As in Proposition 2.6 we start with wp-alloc, obtaining x 7→ 2. We can then
allocate pendingγ using new-pending. We can use those two propositions for establish
the following invariant:(

pendingγ ∗ x 7→ −
)
∨

(
shotγ ∗ (x 7→ 0∨ x 7→ 1)

) N
.

Then, after applying wp-fork, we obtain two new goals:
1. wp x← 1 {_. True}
2. wp ((); x← 0; !x) {v. v = 0∨ v = 1}

For the first goal we symbolically execute the assignment x← 1 by using the invariant.
Depending on the disjunct in the invariant we might either already be in the shot
state, or we have to update pendingγ to shotγ using pending-shoot.

Similarly in the second goal we symbolically execute the assignment x ← 0.
Irregardless of the disjunct in the invariant, we can obtain the predicate pendingγ
which is duplicable by shot-persistent. That means that we can keep a copy of shotγ
for ourselves, in addition to storing another copy of shotγ in the invariant.

Then, when we symbolically dereference x, we notice that the left disjunct in the
invariant cannot be true: because pendingγ from the invariant is incompatible with
shotγ that we have (pending-not-shot).

2.5 The Coq mechanization

Iris comes with a Coq formalization that includes not only the soundness theorem
and the proof rules, but also an interactive proof mode for carrying out tactic-based
proofs in Iris (and other separation logics), as if the user is dealing with regular Coq
proofs. In this section we give a taste of how this interactive proof mode is used to
formally reason about separation logic proofs in Coq.

Interactive separation logic proofs. The Iris Proof Mode (IPM) [KTB17] and
its successor MoSeL [Kre+18] allow us to carry out separation logic proofs in-
teractively, in the style of regular tactic-based proofs in Coq. IPM provides a
convenient representation of sequents for separation logic and tactics for mani-
pulating them, allowing for interactive proof development in the style of regular
proofs in Coq. To illustrate this, consider the following separation logic tautology:

40

2.5. The Coq mechanization

-------------------∗
P -∗ (P -∗ Q) -∗ Q

(a) Before executing any tactics.

"H1" : P
"H2" : P -∗ Q
-------------------∗
Q

(b) After executing iIntros "H1 H2" .

Figure 2.10: Interactive proof of lemma example in IPM.

Lemma example (P Q : iProp Σ) : P -∗ (P -∗ Q) -∗ Q.
Proof. iIntros "H1 H2". iApply ("H2" with "H1"). Qed.

Here, iProp Σ is the type of Iris propositions.7

The intermediate results of running the example proof script can be seen
in Figure 2.10. Applying iIntros "H1 H2" introduces the hypothesis P and
P -∗ Q into the IPM context, giving them names H1 and H2, respectively. Then,
iApply ("H2" with "H1") applies the separating implication P -∗ Q to the goal,
using the hypothesis H1 : P as the assumption.

The bar -------------------* in Figure 2.10 separates the separation logic
context from the goal; the proof state in Figure 2.10a corresponds to the sequent
True ` P −∗ (P −∗ Q) −∗ Q, and the proof state in Figure 2.10b corresponds to the
sequent P ∗ (P −∗Q) `Q. In addition to the separation logic context, there is usually
a Coq-level context which contains identifiers and hypothesis introduced on the
Coq level. Consider, for example, the following modification of the example lemma:

Lemma example2 (P Q : nat → iProp Σ) :
(∀ x, P x -∗ Q (x+1)) -∗ (∃ x, P x) -∗ (∃ x, Q x).

Proof.
iIntros "H1 H2". iDestruct "H2" as (y) "H2".
iExists (y+1). iApply ("H1" with "H2").

Qed.

In this lemma, P and Q are Iris predicates over the type nat of natural numbers in
Coq.

The intermediate results of running the example2 proof script can be seen in Fig-
ure 2.11. In this example, the bar ____________________ separates the Coq context
from the separation logic context. When we “destruct” an existential ∃ x : nat , P x
(i.e., when we use the existential elimination rule), we add the witness x to the Coq
context. We later refer to it when executing the iExists (y+1) tactic (i.e., when we
use the existential introduction rule).

7The parameter Σ describes the kind of ghost state available in Iris. It is an important but technical
detail that can safely be ignored for the purpose of this thesis. An interested reader is directed to [Jun+18b,
Section 4.7].

41

2. Background on separation logic

---∗
(∀ x, P x -∗ Q (x + 1)) -∗ (∃ x : nat, P x) -∗ ∃ x, Q x

(a) Before executing any tactics.

y : nat

"H1" : ∀ x : nat, P x -∗ Q (x + 1)
"H2" : P y
--------------------------------------∗
∃ x : nat, Q x

(b) After executing iIntros "H1 H2" . iDestruct "H1" as (y) "H1" .

y : nat

"H1" : ∀ x : nat, P x -∗ Q (x + 1)
"H2" : P y
--------------------------------------∗
Q (y + 1)

(c) After executing iExists (y+1).

Figure 2.11: Interactive proof of lemma example2 in IPM.

Symbolic execution tactics. In addition to tactics like iIntros and iApply, IPM
provides tactic for symbolic execution in weakest preconditions. Let us demonstrate
their usage on an example. Consider the following formalization of Proposition 2.2:

Lemma example_wp (l1 l2 : loc) (v1 v2 w1 : val) :
l1 7→ v1 ∗ l2 7→ v2 -∗
WP (#l1 ← w1;; !#l2) {{ v, pv = v2q }}.

Proof.
iIntros "[H1 H2]". wp_store. wp_load. eauto.

Qed.

Here, we use Iris’s notion pϕq : iProp Σ to embed Coq propositionsϕ : Prop into
Iris, although on paper we take the equality predicate to be primitive. The #l embeds
locations l : loc into the type of expressions, although on paper we ignore it as it is
usually clear from context.

The intermediate results of running the example_wp proof script can be seen
in Figure 2.12. The first tactic iIntros "[H1 H2]" introduces the hypothesis `1 7→
v1 ∗ `2 7→ v2 into the context, and splits it into two hypothesis `1 7→ v1 and `2 7→ v2.
The next two tactics wp_store and wp_load apply the rules wp-store and wp-load,
taking care of the evaluation context (using wp-bind internally) and pure reductions
(using wp-pure).

42

2.6. Defining custom logics in Iris

l1, l2 : loc
v1, v2, w1 : val

"H1" : l1 7→ v1
"H2" : l2 7→ v2
--------------------------------------∗
WP #l1 ← w1;; ! #l2 {{ v, pv = v2q }}

(a) After executing iIntros "[H1 H2]" .

l1, l2 : loc
v1, v2, w1 : val

"H1" : l1 7→ w1
"H2" : l2 7→ v2
--------------------------------------∗
WP ! #l2 {{ v, pv = v2q }}

(b) After executing wp_store .

l1, l2 : loc
v1, v2, w1 : val

"H1" : l1 7→ w1
"H2" : l2 7→ v2
--------------------------------------∗
pv2 = v2q

(c) After executing wp_load .

Figure 2.12: Interactive proof of lemma example_wp in IPM.

As we have seen, the Iris Coq formalization makes it easy to carry out separation
logic reasoning with the rigor of machine-checked proofs but without the hassle of
all the bookkeeping that is commonly associated with machine-checked proofs. For
all the logics in this thesis we develop tactics similar to the tactics used for weakest-
precondition proofs. We will not return to this topic in details, except for Section 4.8,
where we describe the symbolic execution tactics for ReLoC.

2.6 Defining custom logics in Iris

As we have mentioned, Iris is a separation logic framework that can be used with
different program logics and different programming languages. We finish this chapter
by describing different ways one could define custom logics on top of Iris.

43

2. Background on separation logic

Program logics for different programming languages. The program logic part of
Iris (the weakest precondition calculus in Section 2.2.1) can be instantiated with
languages other than HeapLang. This approach has been taken in, e.g., the RustBelt
project [Jun+18a] and in the RefinedC refinement type system [Sam+20b].

Alternatively, one can use another programming language by shallowly embed-
ding it in HeapLang. This approach has been taken in e.g., [MJP19] and in Chapter 3.
In other chapters of this thesis we work with the standard HeapLang that we have
presented in this chapter.

Custom logical connectives. In addition to using the program logic part of Iris with
different languages, we need to extend Iris by defining different logical connectives
and possibly obtaining a different program logic altogether. New logical connectives
can be defined at several layers in the Iris architecture. The layers are as follows:

• The Bunched Implication logic interface, provided by MoSeL [Kre+18]. It
provides basic facilities for logics which include the Bunched Implication
fragment. Logics defined at this level include iGPS [Kai+17] and Iron [Biz+19].

• The Iris base logic, which defined the standard separation logic connectives
(−∗, ∗) and modalities (., �), as interpreted in the Iris model. At this layer Iris’s
invariants and ghost state mechanisms are defined [Kre+17]. In Chapter 5 we
define a program logic at the level of Iris base logic. Another example of a logic
defined at this level include the If-Convergent calculus from [Tim+18].

• The Iris program logic for HeapLang (the weakest precondition calculus) is
defined on top of the Iris base logic. On top of the Iris program logic for
HeapLang we can define additional logical connectives, as done in Chapters 3
and 4. Other examples of logics defined at this level include the context-local
weakest precondition calculus from [TB19] and the Actris logic for verifying
message-passing programs [HBK20].

44

3λMC: a logic for

non-determinsim in C

expressions

3.1 Introduction

The ISO C standard [ISO12]—the official specification of the C language—leaves
many parts of the language semantics either unspecified (e.g., the order of evaluation
of expressions), or undefined (e.g., dereferencing a NULL pointer or integer overflow).
In case of undefined behavior a program may do literally anything, e.g., it may crash,
or it may produce an arbitrary result and side-effects. Therefore, to establish the
correctness of a C program, one needs to ensure that the program has no undefined
behavior for all possible choices of non-determinism due to unspecified behavior.

In this paper we focus on the undefined and unspecified behaviors related to C’s
expression semantics, which have been ignored by most existing verification tools, but
are crucial for establishing the correctness of realistic C programs. The C standard
does not require subexpressions to be evaluated in a specific order (e.g., from left to
right), but rather allows them to be evaluated in any order. Moreover, an expression
has undefined behavior when there is a conflicting write-write or read-write access
to the same location between two sequence points [ISO12, 6.5p2] (so called “sequence
point violation”). Sequence points occur e.g., at the end of a full expression (;), before
and after each function call, and after the first operand of a conditional expression
(- ? - : -) has been evaluated [ISO12, Annex C]. Let us illustrate this by means of
the following example:

int main() {
int x; int y = (x = 3) + (x = 4);
printf("%d␣%d\n", x, y);

}

Due to the unspecified evaluation order, one would naively expect this program
to print either “3 7” or “4 7”, depending on which assignment to x was evaluated
first. But this program exhibits undefined behavior due to a sequence point violation:
there are two conflicting writes to the variable x. Indeed, when compiled with GCC
(version 8.2.0), the program in fact prints “4 8”, which does not correspond to the
expected results of any of the evaluation orders.

45

3. λMC: a logic for non-determinsim in C expressions

One may expect that these programs can be easily ruled out statically using some
form of static analysis, but this is not the case. Contrary to the simple program above,
one can access the values of arbitrary pointers, making it impossible to statically
establish the absence of write-write or read-write conflicts. Besides, one should not
merely establish the absence of undefined behavior due to conflicting accesses to
the same locations, but one should also establish that there are no other forms of
undefined behavior (e.g., that no NULL pointers are dereferenced) for any evaluation
order.

To deal with this issue, Krebbers [Kre14; Kre15] developed a program logic
based on Concurrent Separation Logic (CSL) [OHe07] for establishing the absence of
undefined behavior in C programs in the presence of non-determinism. To get an
impression of how his logic works, let us consider the rule for the addition operator:

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ (v1 + v2)

{P1 ∗ P2} e1 + e2 {Φ}

This rule is much like the rule for parallel composition in CSL—the precondition
should be separated into two parts P1 and P2 describing the resources needed for
proving the Hoare triples of both operands. Crucially, since P1 and P2 describe disjoint
resources as expressed by the separating conjunction ∗, it is guaranteed that e1 and e2
do not interfere with each other, and hence cannot cause sequence point violations.
The purpose of the rule’s last premise is to ensure that for all possible return values
v1 and v2, the postconditions Ψ1 and Ψ2 of both operands can be combined into the
postcondition Φ of the whole expression.

Krebbers’s logic [Kre14; Kre15] has some limitations that impact its usability:
• The rules are not algorithmic, and hence it is not clear how they could be

implemented as part of an automated or interactive tool.
• It is difficult to extend the logic with new features. Soundness was proven with

respect to a monolithic and ad-hoc model of separation logic.
In this paper we address both of these problems.

We present a new algorithm for symbolic execution in separation logic. Contrary
to ordinary symbolic execution in separation logic [BCO05], our symbolic executor
takes an expression and a precondition as its input, and computes not only the
postcondition, but also simultaneously computes a frame that describes the resources
that have not been used to prove the postcondition. The frame is used to infer the
pre- and postconditions of adjacent subexpressions. For example, in e1 + e2, we use
the frame of e1 to symbolically execute e2.

In order to enable semi-automated reasoning about C programs, we integrate our
symbolic executor into a verification condition generator (vcgen). Our vcgen does not
merely turn programs into proof goals, but constructs the proof goals only as long as
it can discharge goals automatically using our symbolic executor. When an attempt
to use the symbolic executor fails, our vcgen will return a new goal, from which the
vcgen can be called back again after the user helped out. This approach is useful
when integrated into an interactive theorem prover.

We prove soundness of the symbolic executor and verification condition gener-
ator with respect to a refined version of the separation logic by Krebbers [Kre14;

46

3.1. Introduction

Kre15]. Our new logic has been developed on top of the Iris framework [Jun+15;
Jun+16; Kre+17; Jun+18b], and thereby inherits all advanced features of Iris (like
its expressive support for ghost state and invariants), without having to model these
explicitly. To make our new logic better suited for proving the correctness of the
symbolic executor and verification condition generator, our new logic comes with a
weakest precondition connective instead of Hoare triples as in Krebbers’s original
logic.

To streamline the soundness proof of our new program logic, we give a new
monadic definitional translation of a subset of C relevant for non-determinism and
sequence points into an ML-style functional language with concurrency. Contrary to
the direct style operational semantics for a subset of C by Krebbers [Kre14; Kre15],
our approach leads to a semantics that is both easier to understand, and easier to
extend with additional language features.

We have mechanized our whole development in the Coq interactive theorem
prover. The symbolic executor and verification condition generator are defined as
computable functions in Coq, and have been integrated into tactics in the Iris Proof
Mode/MoSeL framework [KTB17; Kre+18]. To obtain end-to-end correctness, we
mechanized the proofs of soundness of our symbolic executor and verification condi-
tion generator with respect to our new separation logic and new monadic definitional
semantics for a subset of C. The Coq development is available at [FGK19b].

Contributions. We describe an approach to semi-automatically prove the absence
of undefined behavior in a given C program for any evaluation order. While doing so,
we make the following contributions:

• We define λMC: a small C-style language with a semantics by a monadic
translation into an ML-style functional language with concurrency (Section 3.2);

• We present a separation logic with weakest preconditions for λMC based on
the separation logic for non-determinism in C by Krebbers [Kre14; Kre15]
(Section 3.3);

• We prove soundness of our separation logic with weakest preconditions by
giving a modular model using the Iris framework [Jun+15; Jun+16; Kre+17;
Jun+18b] (Section 3.4);

• We present a new symbolic executor that not only computes the postcondition
of a C expression, but also a frame, used to determine how resources should be
distributed among subexpressions (Section 3.5);

• On top of our symbolic executor, we define a verification condition genera-
tor that enables semi-automated proofs using an interactive theorem prover
(Section 3.6);

• We demonstrate that our approach can be implemented and proved sound using
Coq for a superset of the λMC language considered in this paper (Section 3.7).

47

3. λMC: a logic for non-determinsim in C expressions

3.2 λMC: A monadic definitional semantics of C

In this section we describe a small C-style language called λMC, which features non-
determinism in expressions. We define its semantics by translation into a ML-style
functional language with concurrency called HeapLang.

We briefly describe the λMC source language (Section 3.2.1) and the HeapLang
target language (Section 3.2.2) of the translation. Then we describe the translation
scheme itself (Section 3.2.3). We explain in several steps how to exploit concurrency
and monadic programming to give a concise and clear definitional semantics.

3.2.1 The source language λMC

The syntax of our source language called λMC is as follows:

v ∈ val ::= z | f | l | NULL | (v1,v2) | () (z ∈ Z, l ∈ Loc)

e ∈ expr ::= v | x | (e1,e2) | e.1 | e.2 | e1 } e2 | (} ∈ {+,−, . . . })
x← e1 ;e2 | if(e1){e2}{e3} | while(e1){e2} | e1(e2) |
alloc(e) | *e | e1=e2 | free(e)

The values include integers, NULL pointers, concrete locations l, function pointers f,
structs with two fields (tuples), and the unit value () (for functions without return
value). There is a global list of function definitions, where each definition is of the
form f(x){e}. Most of the expression constructs resemble standard C notation, with
some exceptions. We do not differentiate between expressions and statements to
keep our language uniform. As such, if-then-else and sequencing constructs are not
duplicated for both expressions and statements. Moreover, we do not differentiate
between lvalues and rvalues [ISO12, p. 6.3.2.1]. Hence, there is no address operator &,
and, similarly to ML, the load (*e) and assignment (e1=e2) operators take a reference
as their first argument.

The sequenced bind operator x← e1 ;e2 generalizes the normal sequencing operator
e1 ;e2 of C by binding the result of e1 to the variable x in e2. As such, x← e1 ;e2 can
be thought of as the declaration of an immutable local variable x. We omit mutable
local variables for now, but these can be easily added as an extension to our method,
as shown in Section 3.7. We write e1 ;e2 for a sequenced bind _← e1 ;e2 in which we
do not care about the return value of e1.

To focus on the key topics of the paper—non-determinism and the sequence
point restriction—we take a minimalistic approach and omit most other features
of C. Notably, we omit non-local control (return, break, continue, and goto). Our
memory model is simplified; it only supports structs with two fields (tuples), but
no arrays, unions, or machine integers. In Section 3.7 we show that some of these
features (arrays, pointer arithmetic, and mutable local variables) can be incorporated.

3.2.2 The target language HeapLang

The target language of our definitional semantics of λMC is concurrent ML-style
programming language HeapLang (defined in more details in Section 2.1) with

48

3.2. λMC: A monadic definitional semantics of C

locks/mutexes (as in Section 2.4.2) and parallel composition (as in Section 2.4.1). The
syntax of HeapLang is as follows:

v ∈Val ::= z | true | false | rec f x = e | ` | () | . . . (z ∈ Z, ` ∈ Loc)

e ∈Expr ::= v | x | e1 e2 | ref(e) | !e | e1← e2 | assert(e) |
e1 || e2 | newlock | acquire | release | . . .

The language contains some concurrency primitives that we will use to model
non-determinism in λMC. Those primitives are (||), newlock, acquire, and release.
The first primitive is the parallel composition operator, which executes expressions
e1 and e2 in parallel, and returns a tuple of their results.

The expression newlock () creates a new mutex. If lk is a mutex that was created
this way, then acquire lk tries to acquire it and blocks until no other thread is using
lk. An acquired mutex can be released using release lk.

In addition, we add an operation assert(e) that reduces to () if e reduces to true,
and gets stuck otherwise. The definition of the assert operation and the associated
proof rule will be presented in Section 3.4.1.

3.2.3 The monadic definitional semantics of λMC

We now give the semantics of λMC by translation into HeapLang. The translation is
carried out in several stages, each iteration implementing and illustrating a specific
aspect of C. First, we model non-determinism in expressions by concurrency, paral-
lelizing execution of subexpressions (step 1). After that, we add checks for sequence
point violations in the translation of the assignment and dereferencing operations
(step 2). Finally, we add function calls and demonstrate how the translation can be
simplified using a monadic notation (step 3).

Step 1: Non-determinism via parallel composition.

We model the unspecified evaluation order in binary expressions like e1 + e2 and
e1=e2 by executing the subexpressions in parallel using the (||) operator:

Je1 + e2K, let (v1,v2) = Je1K || Je2K in v1 +v2

Je1=e2K, let (v1,v2) = Je1K || Je2K in

match v1 with

| None→ assert(false) (* NULL pointer *)

| Some l→match ! l with

| None→ assert(false) (* Use after free *)

| Some _→ l← Some v2; v2

Since our memory model is simple, the value interpretation is straightforward:

JzKV , z (if z ∈ Z) JNULLKV , None

J(v1,v2)KV , (Jv1KV ,Jv2KV) J()KV , () JlKV , Some l

49

3. λMC: a logic for non-determinsim in C expressions

The only interesting case is the translation of locations. Since there is no concept
of a NULL pointer in HeapLang, we use the option type to distinguish NULL pointers
from concrete locations (l). The interpretation of assignments thus contains a pattern
match to check that no NULL pointers are dereferenced. A similar check is performed
in the interpretation of the load operation (*e). Moreover, each location contains an
option to distinguish freed from active locations.

Step 2: Sequence points.

So far we have not accounted for undefined behavior due to sequence point violations.
For instance, the program (x = 3) + (x = 4) gets translated into a HeapLang ex-
pression that updates the value of the location x non-deterministically to either 3
or 4, and returns 7. However, in C, the behavior of this program is undefined, as it
exhibits a sequence point violation: there is a write conflict for the location x.

To give a semantics for sequence point violations, we follow the approach by
Norrish [Nor98], Ellison and Rosu [ER12], and Krebbers [Kre14; Kre15]. We keep
track of a set of locations that have been written to since the last sequence point.
We refer to this set as the environment of our translation, and represent it using a
global variable env of the type mset Loc. Because our target language HeapLang
is concurrent, all updates to the environment env must be executed atomically, i.e.,
inside a critical section. We enforce this behavior by employing a global mutex lk.
The interpretation of assignments e1 = e2 now becomes:

Je1 = e2K, let (v1,v2) = Je1K || Je2K in

acquire lk;

match v1 with

| None→ assert(false) (* NULL pointer *)

| Some l→
assert(¬mset_member l env); (* Seq. point violation *)

match ! l with

| None→ assert(false) (* Use after free *)

| Some _→mset_add l env; l← Some v2;

release lk; v2

Whenever we assign to (or read from) a location l, we check if the location l
is not already present in the environment env. If the location l is present, then it
was already written to since the last sequence point. Hence, accessing the location
constitutes undefined behavior (see the assert in the interpretation of assignments
above). In the interpretation of assignments, we furthermore insert the location l into
the environment env.

In order to make sure that one can access a variable again after a sequence point,
we define the sequenced bind operator x← e1 ;e2 as follows:

Jx← e1 ;e2K, let x = Je1K in acquire lk; mset_clear env; release lk; Je2K

50

3.2. λMC: A monadic definitional semantics of C

ret e , λ_ _. e

e1 ||m e2 , λenv lk. (e1 env lk) || (e2 env lk)

x
m←−− e1; e2 , λenv lk. let x = e1 env lk in e2 env lk

atomic_env e , λenv lk. acquire lk; let a = e env in release lk; a

atomic e , λenv lk. acquire lk; let a = e env (newlock ()) in release lk; a

run(e), e (mset_create ()) (newlock ())

Figure 3.1: The monadic combinators.

After we finished executing the expression e1, we clear the environment env, so that
all locations are accessible in e2 again.

Step 3: Non-interleaved function calls.

As the final step, we present the correct translation scheme for function calls. Unlike
the other expressions, function calls are not interleaved during the execution of
subexpressions [ISO12, 6.5.2.2p10]. For instance, in the program f() + g() the
possible orders of execution are: either all the instructions in f() followed by all the
instructions in g(), or all the instructions in g() followed by all the instructions in
f().

To model this, we execute each function call atomically. In the previous step we
used a global mutex for guarding the access to the environment. We could use that
mutex for function calls too. However, reusing a single mutex for entering each
critical section would not work because a body of a function may contain invocations
of other functions. To that extent, we use multiple mutexes to reflect the hierarchical
structure of function calls.

To handle multiple mutexes, each C expression is interpreted as a HeapLang
function that receives a mutex and returns its result. That is, each C expression is
modeled by a monadic expression in the reader monadM(A), msetLoc→ mutex→ A.
For consistency’s sake, we now also use the monad to thread through the reference to
the environment (mset Loc), instead of using a global variable env as we did in the
previous step.

We use a small set of monadic combinators, shown in Figure 3.1, to build the
translation in a more abstract way.1 The return and bind operators are standard for
the reader monad. The parallel operator runs two monadic expressions concurrently,
propagating the environment and the mutex. The atomic combinator invokes a
monadic expression with a fresh mutex. The atomic_env combinator atomically
executes its body with the current environment as an argument. The run function

1Essentially, we are using the reader monad to model reentrant atomic blocks in the absence of
reentrant locks.

51

3. λMC: a logic for non-determinsim in C expressions

Je1 + e2K, (v1,v2)
m←−− (Je1K ||m Je2K) ; ret (v1 +v2)

J*eK, v
m←−− JeK;

atomic_env (λenv.
match v with

| None→ assert(false) (* NULL pointer *)

| Some l→
(* Check for a seq. point violation *)

assert(¬mset_member l env);

match ! l with

| None→ assert(false) (* Use after free *)

| Some w→ ret w)

Je1=e2K, (v1,v2)
m←−− (Je1K ||m Je2K) ;

atomic_env (λenv.
match v1 with

| None→ assert(false) (* NULL pointer *)

| Some l→
(* Check for a seq. point violation *)

assert(¬mset_member l env);

match ! l with

| None→ assert(false) (* Use after free *)

| Some _→mset_add l env; l← Some v2; ret v2)

Jx← e1 ;e2K, x
m←−− Je1K;

_
m←−− (atomic_env mset_clear);

Je2K

Jif(e1){e2}{e3}K, x
m←−− Je1K;

_
m←−− (atomic_env mset_clear);

if x then Je2K else Je3K

Je1(e2)K, (f ,a)
m←−− (Je1K ||m Je2K) ;

atomic (atomic_env mset_clear; f a)

Jf(x){e}K, let rec f x = v
m←−− JeK; _

m←−− (atomic_env mset_clear); ret v

Figure 3.2: Selected clauses from the monadic definitional semantics.

52

3.3. Separation logic with weakest preconditions for λMC

executes the monadic computation by instantiating it with a fresh mutex and a new
environment.

Selected clauses for the translation are presented in Figure 3.2. The translation of
the binary operations remains virtually unchanged, except for the usage of monadic
parallel composition instead of the standard one. The translation for the assignment
and the sequenced bind uses the atomic_env combinator for querying and updating
the environment. We also have to adapt our translation of values, by wrapping it in
ret : JvK, ret JvKV .

A global function definition f(x){e} is translated as a top level let-binding. A
function call is then just an atomically executed function invocation in HeapLang,
modulo the fact that the function pointer and the arguments are computed in parallel.
In addition, sequence points occur at the beginning of each function call and at the
end of each function body [ISO12, Annex C], and we reflect that in our translation by
clearing the environment at appropriate places.

Our semantics by translation can easily be extended to cover other features of
C, e.g., a more advanced memory model (see Section 3.7). However the fragment
presented here already illustrates the challenges that non-determinism and sequence
point violations pose for verification. In the next section we describe a logic for
reasoning about the semantics by translation given in this section.

3.3 Separation logic with weakest preconditions for λMC

In this section we present a separation logic with weakest precondition propositions
for reasoning about λMC programs. The logic tackles the main features of our
semantics—non-determinism in expressions evaluation and sequence point violations.
We will discuss the high-level rules of the logic pertaining to C connectives by going
through a series of small examples.

The logic presented here is similar to the separation logic by Krebbers [Kre14], but
it is given in a weakest precondition style, and moreover, it is constructed synthetically
on top of the separation logic framework Iris [Jun+15; Jun+16; Kre+17; Jun+18b],
whereas the logic by Krebbers [Kre14] is interpreted directly in a bespoke model.

The following grammar defines the formulas of the logic:

P ,Q ∈ iProp ::= True | False | ∀x. P | ∃x. P | v1 = v2 | l
q

↪−−→ξ v (q ∈ (0,1], ξ ∈ {L,U })
| P ∗Q | P −∗Q | UP | cwp e {Φ} | . . .

Most of the connectives are commonplace in separation logic, with the exception of
the modified points-to connective, which we describe in this section.

The weakest precondition connective cwp e {Φ} states that the program e is safe
(the program has defined behavior), and if e terminates to a value v, then v satisfies
the predicate Φ . We write cwp e {v.Φ v} for cwp e {λv.Φ v}. As is common, Hoare
triples {P } e {Φ} are syntactic sugar for P ` cwp e {Φ}.

Contrary to the paper by Krebbers [Kre14], we use weakest preconditions instead
of Hoare triples throughout this paper. There are several reasons for doing so:

1. We do not have to manipulate the preconditions explicitly, e.g., by applying the
consequence rule to the precondition.

53

3. λMC: a logic for non-determinsim in C expressions

cwp-value

Φ v

cwp v {Φ}

cwp-wand

cwp e {Φ} (∀v.Φ v −∗ Ψ v)

cwp e {Ψ }

cwp-seq

cwp e1 {v.U(cwp e2[v/x] {Φ})}
cwp (x← e1 ;e2) {Φ}

cwp-bin-op

cwp e1 {Ψ1} cwp e2 {Ψ2} (∀w1w2.Ψ1 w1 ∗Ψ2 w2 −∗ Φ(w1 J}K w2))

cwp (e1 } e2) {Φ}

cwp-load

cwp e

{
l. ∃w q. l

q
↪−−→U w ∗ (l

q
↪−−→U w −∗ Φ w)

}
cwp (*e) {Φ}

cwp-alloc

cwp e {v. ∀l. l ↪→U v −∗ Φ l}
cwp alloc(e) {Φ}

cwp-store

cwp e1 {Ψ1} cwp e2 {Ψ2}
(∀lw.Ψ1 l ∗Ψ2 w −∗ ∃v. l ↪→U v ∗ (l ↪→L w −∗ Φ w))

cwp (e1=e2) {Φ}

cwp-free

cwp e {l. ∃v. l ↪→U v ∗Φ ()}
cwp free(e) {Φ}

cmapsto-split

l
q1
↪−−→ξ1

v ∗ l
q2
↪−−→ξ2

v a` l
q1+q2
↪−−→ξ1∨ξ2

v

cmapsto-values-agree

l
q1
↪−−→ξ1

v1 l
q2
↪−−→ξ2

v2

v1 = v2

U-unlock

l
q

↪−−→L v

U(l
q

↪−−→U v)

U-mono

P −∗Q
UP −∗ UQ

U-intro

P

UP

U-sep

UP ∗UQ
U(P ∗Q)

Figure 3.3: Selected rules.

2. The soundness of our symbolic executor (Theorem 3.3) can be stated more
concisely using weakest precondition propositions.

3. It is more convenient to integrate weakest preconditions into the Iris Proof Mod-
e/MoSeL framework in Coq that we use for our implementation (Section 3.7).

A selection of rules is presented in Figure 3.3. Each inference rule
P1 . . . Pn
Q

in this

paper should be read as the entailment P1 ∗ . . . ∗ Pn `Q. We now explain and motivate
the rules of our logic.

3.3.1 Non-determinism

In the introduction (Section 3.1) we have already shown the rule for addition from
Krebbers’s logic [Kre14], which was written using Hoare triples. Using weakest

54

3.3. Separation logic with weakest preconditions for λMC

preconditions, the corresponding rule (cwp-bin-op) is:

cwp e1 {Ψ1} cwp e2 {Ψ2} (∀w1w2.Ψ1 w1 ∗Ψ2 w2 −∗ Φ(w1 J}K w2))

cwp (e1 } e2) {Φ}

This rule closely resembles the usual rule for parallel composition in ordinary con-
current separation logic [OHe07]. This should not be surprising, as we have given a
definitional semantics to binary operators using the parallel composition operator.
It is important to note that the premises cwp-bin-op are combined using the sepa-
rating conjunction ∗. This ensures that the weakest preconditions cwp e1 {Ψ1} and
cwp e2 {Ψ2} for the subexpressions e1 and e2 are verified with respect to disjoint
resources. As such they do not interfere with each other, and can be evaluated in
parallel without causing sequence point violations.

To see how one can use the rule cwp-bin-op, let us verify P ` cwp (e1 + e2) {Φ}.
That is, we want to show that (e1 + e2) satisfies the postcondition Φ assuming the
precondition P . This goal can be proven by separating the precondition P into
disjoint parts P1 ∗P2 ∗R a` P . Then using cwp-bin-op the goal can be reduced to proving
Pi ` cwp ei {Ψi} for i ∈ {0,1}, and R ∗Ψ1 w1 ∗Ψ2 w2 ` Φ (w1 J}K w2) for any return values
wi of the expressions ei .

3.3.2 Fractional permissions

Separation logic includes the points-to connective l ↪→ v, which asserts unique owner-
ship of a location l with value v. This connective is used to specify the behavior of
stateful operations, which becomes apparent in the following proposed rule for load:

cwp e {l. ∃w. l ↪→ w ∗ (l ↪→ w −∗ Φ w)}
cwp (*e) {Φ}

In order to verify *e we first make sure that e evaluates to a location l, and then we
need to provide the points-to connective l ↪→ w for some value stored at the location.
This rule, together with cwp-value, allows for verification of simple programs like
l ↪→ v ` cwp (*l) {w. w = v ∗ l ↪→ v}.

However, the rule above is too weak. Suppose that we wish to verify the program
*l+ *l from the precondition l ↪→ v. According to cwp-bin-op, we have to separate the
proposition l ↪→ v into two disjoint parts, each used to verify the load operation. In
order to enable sharing of points-to connectives we use fractional permissions [Boy03;
Bor+05]. In separation logic with fractional permissions each points-to connective is
annotated with a fraction q ∈ (0,1], and the resources can be split in accordance with
those fractions:

l
q1+q2
↪−−→ v a` l

q1
↪−−→ v ∗ l

q2
↪−−→ v.

A connective l
1

↪−−→ v provides a unique ownership of the location, and we refer to it
as a write permission. A points-to connective with q ≤ 1 provides shared ownership of
the location, referred to as a read permission. By convention, we write l ↪→ v to denote

the write permission l
1

↪−−→ v.

55

3. λMC: a logic for non-determinsim in C expressions

With fractional permissions at hand, we can relax the proposed load rule, by
allowing to dereference a location even if we only have a read permission:

cwp e

{
l. ∃wq. l

q
↪−−→ w ∗ (l

q
↪−−→ w −∗ Φ w)

}
cwp (*e) {Φ}

This corresponds to the intuition that multiple subexpressions can safely dereference
the same location, but not write to them.

Using the rule above we can verify l ↪→ 1 ` cwp (*l + *l) {v. v = 2 ∗ l ↪→ 1} by

splitting the assumption into l
0.5
↪−−→ 1 ∗ l 0.5

↪−−→ 1 and first applying cwp-bin-op with Ψ1

and Ψ2 being λv. (v = 1) ∗ l 0.5
↪−−→ 1. Then we apply cwp-load on both subgoals. After

that, we can use cmapsto-split to prove the remaining formula:

(v1 = 1) ∗ l 0.5
↪−−→ 1 ∗ (v2 = 1) ∗ l 0.5

↪−−→ 1 ` (v1 + v2 = 2) ∗ l ↪→ 1.

3.3.3 The assignment operator

The second main operation that accesses the heap is the assignment operator e1=e2.
The arguments on the both sides of the assignment are evaluated in parallel, and a
points-to connective is required to perform an update to the heap. A naive version of
the assignment rule can be obtained by combining the binary operation rule and the
load rule:

cwp e1 {Ψ1} cwp e2 {Ψ2} (∀lw.Ψ1 l ∗Ψ2 w −∗ ∃v. l ↪→ v ∗ (l ↪→ w −∗ Φ w))

cwp (e1=e2) {Φ}

The write permission l ↪→ v can be obtained by combining the resources of both sides
of the assignment. This allows us to verify programs like l=*l + *l.

However, the rule above is unsound, because it fails to account for sequence point
violations. We could use the rule above to prove safety of undefined programs, e.g.,
the program l=(l=3).

To account for sequence point violations we decorate the points-to connectives

l
q

↪−−→ξ v with access levels ξ ∈ {L,U }. These have the following semantics: we can
read from and write to a location that is unlocked (U), and the location becomes

locked (L) once someone writes to it. Proposition l
q

↪−−→U v (resp. l
q

↪−−→L v) asserts
ownership of the unlocked (resp. locked) location l. We refer to such propositions as
lockable points-to connectives. Using lockable points-to connectives we can formulate
the correct assignment rule:

cwp e1 {Ψ1} cwp e2 {Ψ2} (∀lw.Ψ1 l ∗Ψ2 w −∗ ∃v. l ↪→U v ∗ (l ↪→L w −∗ Φ w))

cwp (e1=e2) {Φ}

The set {L,U } has a lattice structure with L ≤U , and the levels can be combined with

a join operation, see cmapsto-split. By convention, l
q

↪−−→ v denotes l
q

↪−−→U v.

56

3.3. Separation logic with weakest preconditions for λMC

3.3.4 The unlocking modality

As locations become locked after using the assignment rule, we wish to unlock them
in order to perform further heap operations. For instance, in the expression l=4 ; *l
the location l becomes unlocked after the sequence point “;” between the store and
the dereferencing operations. To reflect this in the logic, we use the rule cwp-seq

which features the unlocking modality U (which is called the unlocking assertion
in [Kre14, Definition 5.6]):

cwp e1 {_.U(cwp e2 {Φ})}
cwp (e1 ;e2) {Φ}

Intuitively, UP states that P holds, after unlocking all locations. The rules of U in
Figure 3.3 allow one to turn a sequent

(P1 ∗ . . . ∗ Pm) ∗ (l1 ↪→L v1 ∗ . . . ∗ lm ↪→L vm) ` UQ

into
(P1 ∗ . . . ∗ Pm) ∗ (l1 ↪→U v1 ∗ . . . ∗ lm ↪→U vm) ` Q.

This is done by applying either U-unlock or U-intro to each premise; then collecting
all premises into one formula under U by U-sep; and finally, applying U-mono to the
whole sequent.

3.3.5 A detailed example

To further illustrate the interplay of all the rules, let us specify and verify the follow-
ing C function:

int f (int *r, int *l) {
*r = (*r + *r) + (*l = *l + 1);
return *r;

}

It corresponds to the λMC term r=((*r+ *r) + (l=*l + 1)) ; *r, which we denote here
by e. We want to verify that e is correct w.r.t. to the following specification:

r ↪→ v ∗ l ↪→ w ` cwp e {u. u = (2v+ w+ 1) ∗ r ↪→ (2v+ w+ 1) ∗ l ↪→ (w+ 1)}

We start proving this goal by applying cwp-seq, followed by cwp-wand with

Ψ (u), (u = (2v+ w+ 1)) ∗ r ↪→L (2v+ w+ 1) ∗ l ↪→L (w+ 1).

We then get two branches in the proof tree. For the second one (the implication),
we use the rules for the U modality and cwp-load. It remains to show the goal
cwp r=(*r+ *r) + (l=*l + 1) {Ψ }. For that we use the assignment rule cwp-store. The
left hand side of assignment is trivially evaluated to r (using cwp-value), so we focus
on the right hand side instead. For the right hand side we apply the rule cwp-bin-op

twice, distributing the resources from the precondition in such a way that

57

3. λMC: a logic for non-determinsim in C expressions

• we use r
0.5
↪−−→ v (twice) to verify *r;

• we use l ↪→ w to verify (l=*l + 1).
Those propositions are then combined and updated to r ↪→ v ∗ l ↪→L w+ 1. The return
value of the whole expression is 2v+ w+ 1, as expected. Finally, the assignment rule
updates the hypothesis to r ↪→L (2v+ w+ 1) ∗ l ↪→L w+ 1, which allows us to conclude
the proof.

Of course, writing out a proof like this is a tedious endeavor, as we are forced at
almost each intermediate step to come up with the division of the hypothesis among
the new goals, as well as the auxiliary predicates Ψi . We will see in Section 3.6 that
this process can be largely automated, handling both non-determinism and sequence
points in most of the ordinary cases.

3.4 Soundness of weakest preconditions for λMC

In this section we prove adequacy of the separation logic with weakest preconditions
for λMC as presented in Section 3.3. We do this by giving a model using the Iris
framework that is structured in a similar way as the translation that we gave in
Section 3.2. This translation consisted of three layers: the target HeapLang language,
the monadic combinators, and the λMC operations themselves. In the model, each
corresponding layer abstracts from the details of the previous layer, in such a way
that we never have to break the abstraction of a layer. At the end, putting all of this
together, we get the following adequacy statement:

Theorem 3.1 (Adequacy of Weakest Preconditions). If cwp e {Φ} is derivable, then e

has no undefined behavior for any evaluation order. In other words, run(e) does not
assert false.

The proof of the adequacy theorem closely follows the layered structure, by com-
bining the correctness of the monadic run combinator with adequacy of HeapLang in
Iris [Jun+18b, Theorem 6]. The rest of this section is organized as:

1. Because our translation targets HeapLang, we start by recalling the separation
logic with weakest preconditions, for HeapLang part of Iris (Section 3.4.1).

2. On top of the logic for HeapLang, we define a notion of weakest preconditions
mwp e {Φ} for expressions e built from our monadic combinators (Section 3.4.2).

3. Next, we define the lockable points-to connective `
q

↪−−→ξ v using Iris’s machinery
for custom ghost state (Section 3.4.3).

4. Finally, we define weakest preconditions for λMC by combining the weakest pre-
conditions for monadic expressions with our translation scheme (Section 3.4.5).

3.4.1 Weakest preconditions for HeapLang

We recall (Section 2.2.1) the most essential Iris connectives for reasoning about Hea-
pLang programs: wp e {Φ} and ` 7→ v, which are the HeapLang weakest precondition
proposition and the HeapLang points-to connective, respectively. An example rule

58

3.4. Soundness of weakest preconditions for λMC

wp-load

` 7→ v (` 7→ v −∗ Φ v)

wp !` {Φ}

wp-store

` 7→ v (` 7→ w −∗ Φ ())

wp `← w {Φ}

wp-bind

wp e {v.wp K[v] {Φ}}
wp K[e] {Φ}

wp-assert

wp e {v. v = true ∗Φ ()}
wp assert(e) {Φ}

R ∗ (∀γ lk. is_lock(γ, lk,R) −∗ Φ lk) ` wp newlock () {Φ}
is_lock(γ, lk,R) ∗ (R ∗ locked(γ) −∗ Φ ()) ` wp acquire lk {Φ}

is_lock(γ, lk,R) ∗R ∗ locked(γ) ∗Φ () ` wp release lk {Φ}
is_lock(γ, lk,R) ∗ is_lock(γ, lk,R) a` is_lock(γ, lk,R) (islock-dupl)

Figure 3.4: Selected wp rules.

is the store rule for HeapLang, shown in Figure 3.4. The rule requires a points-to
connective ` 7→ v, and the user receives the updated points-to connective ` 7→ w back
for proving Φ (). Note that the rule is formulated for a concrete location ` and a
value w, instead of arbitrary expressions. This does not limit the expressive power;
since the evaluation order in HeapLang is deterministic,2 arbitrary expressions can
be handled using the wp-bind rule. Using this rule, one can bind an expression e in
an arbitrary evaluation context K . We can thus use the wp-bind rule twice to derive a
more general store rule for HeapLang:

wp e2 {w.wp e1 {`. (∃v. ` 7→ v) ∗ (` 7→ w −∗ Φ ())}}
wp (e1← e2) {Φ}

To verify the monadic combinators and the translation of λMC operations in the
upcoming sections Sections 3.4.2 and 3.4.5, we need the specifications for all the
functions that we use, including those on mutable sets and mutexes. The rules for
mutable sets are the same as in Section 2.2.5, and thus omitted. They involve the
usual abstract predicate is_mset(s,X) stating that the reference s represents a set with
contents X.

The rules for mutexes (the same as in Section 2.4.2) are presented in Figure 3.4.
When a new mutex is created, a user gets access to a proposition is_lock(γ, lk,R),
which states that the value lk is a mutex containing the resources R. This proposition
can be duplicated freely (islock-dupl). A thread can acquire the mutex and receive the
resources contained in it. In addition, the thread receives a token locked(γ) meaning
that it has entered the critical section. When a thread leaves the critical section and
releases the mutex, it has to give up both the token and the resources R.

2And right-to-left, although our monadic translation does not rely on that.

59

3. λMC: a logic for non-determinsim in C expressions

mwp-ret

wp e {Φ}
mwp (ret e) {Φ}

mwp-bind

mwp e1 {v.mwp e2[v/x] {Φ}}

mwp (x
m←−− e1; e2) {Φ}

mwp-pure

e→pure e
′ mwp K[e′] {Φ}

mwp K[e] {Φ}

mwp-wand

mwp e {Φ} (∀v.Φ(v) −∗ Ψ (v))

mwp e {Ψ }

mwp-par

mwp e1 {Ψ1} mwp e2 {Ψ2} (∀w1w2.Ψ1 w1 ∗Ψ2 w2 −∗ Φ (w1,w2))

mwp (e1 ||m e2) {Φ}

mwp-atomic-env

∀env. env_inv(env) −∗ wp (v env) {w. env_inv(env) ∗Φ w}
mwp (atomic_env v) {Φ}

mwp-run

mwp v {Φ}
wp run v {Φ}

Figure 3.5: Selected monadic mwp rules.

The rule wp-assert is new (it was not described in Chapter 2), but it can be easily
derived given the following definition of assert:

assert(e), if e then () else π1(0)

The idea behind this definition is that π1(0) is a stuck expression that can not be
evaluated. Thus, in order for assert(e) not to get stuck, e has to evaluate to true.

3.4.2 Weakest preconditions for monadic expressions

As a next step, we define a weakest precondition proposition mwp e {Φ} for a monadic
expression e. The definition is constructed in the ambient logic, and it encapsulates
the monadic operations in a separate layer. Due to that, we are able to carry out
proofs of high-level specifications without breaking the abstraction (Section 3.4.5).
The specifications for selected monadic operations in terms of mwp are presented in
Figure 3.5. We define the weakest precondition for a monadic expression e as follows:

mwp e {Φ}, wp e

 g. ∀γ env lk. is_lock(γ, lk,env_inv(env)) −∗
wp (g env lk) {Φ}

The idea is that we first reduce e to a monadic value g. To perform this reduction we
have the outermost wp connective in the definition of mwp. This monadic value is
then evaluated with an arbitrary environment and an arbitrary mutex. Note that we
universally quantify over any mutex lk to support nested locking in atomic . This
definition is parameterized by an environment invariant env_inv(env), which describes
the resources accessible in the critical sections. We show how to define env_inv in the
next subsection.

60

3.4. Soundness of weakest preconditions for λMC

heap-alloc

` 7→ v full_heap(σ)

|V` ↪→U v ∗ full_heap(σ [`←(U,v)])

heap-upd

` ↪→U v full_heap(σ)

|Vσ (`) = (U,v) ∗ ` 7→ v ∗ (∀v′ ξ ′ . ` 7→ v′ ` ↪−−→ξ ′ v
′ ∗ full_heap(σ

[
`←(ξ ′ ,v′)

]
))

Figure 3.6: Selected rules of the lockable heap construction.

Using this definition we derive the rules for mwp e {Φ}, as given in Figure 3.5. In
a monad, the expression evaluation order is made explicit via the bind operation
x

m←−− e1; e2. To that extent, contrary to HeapLang, we no longer have a rule like
wp-bind, which allows to bind an expression in a general evaluation context. Instead,
we have the rule mwp-bind, which reflects that the only evaluation context we have is
the monadic bind x

m←−− [•]; e.

3.4.3 Modeling the heap

The monadic rules in Figure 3.5 are expressive enough to derive some of the λMC-
level rules, but we are still missing one crucial part: handling of the heap. In order to

do that, we need to define lockable points-to connectives l
q

↪−−→ξ v in such a way that
they are linked to the HeapLang points-to connectives ` 7→ v.

The key idea is the following. The environment invariant env_inv of monadic
weakest preconditions will track all HeapLang points-to connectives ` 7→ v that
have ever been allocated at the λMC level. Via Iris ghost state, we then connect this

knowledge to the lockable points-to connectives l
q

↪−−→ξ v. We refer to the construction
that allows us to carry this out as the lockable heap. Note that the description of
lockable heap is fairly technical and requires an understanding of the ghost state
mechanism in Iris.

A lockable heap is a map σ : Loc fin−−⇀ {L,U } ×Val that keeps track of the access
levels and values associated with the locations. The connective full_heap(σ) asserts
the ownership of all the locations present in the domain of σ . Specifically, it asserts

` 7→ v for each [`←(ξ,v)] ∈ σ . The connective `
q

↪−−→ξ v then states that [`←(ξ,v)] is
part of the global lockable heap, and it asserts this with the fractional permission q.
We treat the lockable heap as an opaque abstraction, whose exact implementation via
Iris ghost state is described in the Coq formalization [FGK19b]. The main interface
for the locking heap are the rules in Figure 3.6. The rule heap-alloc states that we can
turn a HeapLang points-to connective ` 7→ v into ` ↪−−→ξ v by changing the lockable
heap σ accordingly. The rule heap-upd states that given ` ↪−−→ξ v, we can temporarily
get a HeapLang points-to connective ` 7→ v out of the locking heap and update its
value.

61

3. λMC: a logic for non-determinsim in C expressions

The environment invariant env_inv(env) in the definition of mwp ties the contents
of the lockable heap to the contents of the environment env:

env_inv(env), ∃σ X. is_mset(env,X) ∗ full_heap(σ) ∗ (∀` ∈ X.∃v. σ (`) = (L,v))

The first conjunct states that X : ℘fin(Loc) is a set of locked locations, according to
the environment env. The second conjunct asserts ownership of the global lockable
heap σ . Finally, the last conjunct states that the contents of env agrees with the
lockable heap: every location that is in X is locked according to σ .

3.4.4 The unlocking modality

The unlocking modality is defined in the logic as:

UP , ∃S. (∗
(l,v,q)∈S

l
q

↪−−→L v) ∗ ((∗
(l,v,q)∈S

l
q

↪−−→U v) −∗ P)

Here S is a finite multiset of tuples containing locations, values, and fractions. The
update modality accumulates the locked locations, waiting for them to be unlocked
at a sequence point.

3.4.5 Deriving the λMC rules

To model weakest preconditions for λMC (Figure 3.3) we compose the construction
we have just defined with the translation of Section 3.2 cwp e {Φ} , mwp JeK {Φ ′}.
Here, Φ ′ is the obvious lifting of Φ from λMC values to HeapLang values. Using the
rules from Figures 3.5 and 3.6 we derive the high-level λMC rules without unfolding
the definition of the monadic mwp.

Example 3.2. Consider the rule cwp-store for assignments e1=e2, stated in terms of
mwp e {Φ}

mwp Je1K {Ψ1} mwp Je2K {Ψ2}
(∀lw.Ψ1 l ∗Ψ2 w −∗ ∃v. l ↪→U v ∗ (l ↪→L w −∗ Φ w))

mwp Je1=e2K {Φ}

Using mwp-bind and mwp-par, the soundness of cwp-store can be reduced to verify-
ing the assignment with e1 being l, e2 being v′, under the assumption l ↪→U v. We
use mwp-atomic-env to turn our goal into a HeapLang weakest precondition propo-
sition and to gain access an environment env, and to the proposition env_inv(env),
from which we extract the lockable heap σ . We then use heap-upd to get access to
the underlying HeapLang location and obtain that l is not locked according to σ .
Due to the environment invariant, we obtain that l is not in env, which allows us to
prove the assert for sequence point violation in the interpretation of the assignment.
Finally, we perform the physical update of the location.

62

3.5. A symbolic executor for λMC

3.5 A symbolic executor for λMC

In order to turn our program logic into an automated procedure, it is important
to have rules for weakest preconditions that have an algorithmic form. However,
the rules for binary operators in our separation logic for λMC do not have such a
form. Take for example the rule cwp-bin-op for binary operators e1 } e2. This rule
cannot be applied in an algorithmic manner. To use the rule one should supply the
postconditions for e1 and e2, and frame the resources from the context into two
disjoint parts. This is generally impossible to do automatically.

To address this problem, we first describe how the rules for binary operators
can be transformed into algorithmic rules by exploiting the notion of symbolic exe-
cution [BCO05] (Section 3.5.1). We then show how to implement these algorithmic
rules as part of an automated symbolic execution procedure (Section 3.5.2).

3.5.1 Rules for symbolic execution

We say that we can symbolically execute an expression e using a precondition P , if we
can find a symbolic execution tuple (w,Q,R) consisting of a return value w, a postcondition
Q, and a frame R satisfying:

P ` cwp e {v. v = w ∗Q} ∗R

This specification is much like that of ordinary symbolic execution in separation
logic [BCO05], but there is important difference. Apart from computing the post-
condition Q and the return value w, there is also the frame R, which describes the
resources that are not used for proving e. For instance, if the precondition P is

P ′ ∗ l
q

↪−−→ w and e is a load operation *l, then we can symbolically execute e with the

postcondition Q being l
q/2
↪−−→ w, and the frame R being P ′ ∗ l

q/2
↪−−→ w. Clearly, P ′ is not

needed for proving the load, so it can be moved into the frame. More interestingly,

since loading the contents of l requires a read permission l
p

↪−−→ w, with p ∈ (0,1], we

can split the hypothesis l
q

↪−−→ w into two halves and move one into the frame. Below
we will see why that matters.

If we can symbolically execute one of the operands of a binary expression e1 } e2,
say e1 in P , and find a symbolic execution tuple (w1,Q,R), then we can use the
following admissible rule:

R ` cwp e2 {w2. Q −∗ Φ (w1 J}K w2)}
P ` cwp (e1 } e2) {Φ}

This rule has a much more algorithmic flavor than the rule cwp-bin-op. Applying the
above rule now boils down to finding such a tuple (w,Q,R), instead of having to infer
postconditions for both operands, as we need to do to apply cwp-bin-op.

For instance, given an expression (*l)} e2 and a precondition P ′ ∗ l
q

↪−−→ v, we can

63

3. λMC: a logic for non-determinsim in C expressions

derive the following rule:

P ′ ∗ l
q/2
↪−−→ v ` cwp e2

{
w2. l

q/2
↪−−→ v −∗ Φ (v J}K w2)

}
P ′ ∗ l

q
↪−−→ v ` cwp (*l} e2) {Φ}

This rule matches the intuition that only a fraction of the permission l
q

↪−−→ v is needed
to prove a load *l, so that the remaining half of the permission can be used to prove
the correctness of e2 (which may contain other loads of l).

3.5.2 An algorithm for symbolic execution

For an arbitrary expression e and a proposition P , it is unlikely that one can find such
a symbolic execution tuple (w,Q,R) automatically. However, for a certain class of C
expressions that appear in actual programs we can compute a choice of such a tuple.
To illustrate our approach, we will define such an algorithm for a small subset expr
of C expressions described by the following grammar:

ē ∈ expr ::= v | *ē | ē1= ē2 | ē1 } ē2.

We keep this subset small to ease presentation. In Section 3.7 we explain how to
extend the algorithm to cover the sequenced bind operator x← ē1 ; ē2.

Moreover, to implement symbolic execution, we cannot manipulate arbitrary
separation logic propositions. We thus restrict to symbolic heaps (m ∈ sheap), which
are defined as finite partial functions Loc fin−−⇀ ({L,U } × (0,1] × val) representing a
collection of points-to propositions:

JmK , ∗
l∈dom(m)

m(l)=(ξ,q,v)

l
q

↪−−→ξ v.

We use the following operations on symbolic heaps:
• m[l 7→ (ξ,q,v)] sets the entry m(l) to (ξ,q,v);

• m \ {l 7→ _} removes the entry m(l) from m;

• m1 tm2 merges the symbolic heaps m1 and m2 in such a way that for each
l ∈ dom(m1)∪dom(m2), we have:

(m1 tm2)(l) =

mi(l) if l ∈ dom(mi) and l < dom(mj)

(ξ ∨ ξ ′ ,q+ q′ ,v) if m1(l) = (ξ,q,v) and m2(l) = (ξ ′ ,q′ ,_).
With this representation of propositions, we define the symbolic execution algo-

rithm as a partial function forward : (sheap× expr)→ (val× sheap× sheap), which
satisfies the specification stated in Section 3.5.1, i.e., for which the following holds:

Theorem 3.3. Given an expression e and an symbolic heap m, if forward(m,e) re-
turns a tuple (w,mo1,m1), then JmK ` cwp e

{
v. v = w ∗ Jmo1K

}
∗ Jm1K.

64

3.5. A symbolic executor for λMC

forward(m,v), (v,∅,m)

forward(m,e1 } e2), (v1 J}K v2,mo1 tm
o
2,m2)

where (v1,m
o
1,m1) = forward(m,e1)

(v2,m
o
2,m2) = forward(m1,e2)

forward(m,*e1), (w,mo2 t {l 7→ (U,q,w)},m2)
where (l,mo1,m1) = forward(m,e1) provided l ∈ Loc

(m2,m
o
2,q,w) = delete_frac_2(l,m1,m

o
1)

forward(m,e1=e2), (v2,m
o
3 t {l 7→ (L,1,v2)},m3)

where (l,mo1,m1) = forward(m,e1) provided l ∈ Loc

(v2,m
o
2,m2) = forward(m1,e2)

(m3,m
o
3) = delete_full_2(l,m2,m

o
1 tm

o
2)

forward(m,e),⊥ if e < expr

Auxiliary functions:

delete_frac_2(l,m1,m2),

(m1[l 7→ (U,q/2,v)],m2,q/2,v) if m1(l) = (U,q,v)

(m1,m2[l 7→ (U,q/2,v)],q/2,v) if m1(l) , (U,_,_),
m2(l) = (U,q,v)

⊥ otherwise

delete_full_2(l,m1,m2), (m1 \ {l 7→ _},m2 \ {l 7→ _})
where (U,1,_) = (m1 tm2)(l)

Figure 3.7: The definition of the symbolic executor.

The definition of the algorithm is shown in Figure 3.7. Given a tuple (m,e), a
call to forward(m,e) either returns a tuple (v,mo,m′) or fails, which either happens
when e < expr or when one of intermediate steps of computation fails. In the latter
cases, we write forward(m,e) = ⊥. The algorithm proceeds by case analysis on
the expression e. In each case, the expected output is described by the equation
forward(m,e) = (v,mo,m′). The results of the intermediate computations appear on
separate lines under the clause “where . . .”. If one of the corresponding equations
does not hold, e.g., a recursive call fails, then the failure is propagated. Let us now
explain the case for the assignment operator.

If e is an assignment operator e1=e2, we first evaluate e1 and then e2. Fix-
ing the order of symbolic execution from left to right does not compromise the
non-determinism underlying the C semantics of binary operators. Indeed, when
forward(m,e1) = (v1,m

o
1,m1), we evaluate the expression e2, using the frame

m1, i.e., only the resources of m that remain after the execution of e1. When

65

3. λMC: a logic for non-determinsim in C expressions

forward(m,e1) = (l,mo1,m1), with l ∈ Loc, and forward(m1,e2) = (v2,m
o
2,m2), the

function delete_full_2(l,m2,m
o
1 tm

o
2) checks whether (m2 tmo1 tm

o
2)(l) contains

the write permission l ↪→U −. If this holds, it removes the location l, so that the write
permission is now consumed. Finally, we merge {l 7→ (L,1,v2)} with the output heap
mo3, so that after assignment, the write permission l ↪→L v2 is given back in a locked
state.

3.6 A verification condition generator for λMC

To establish correctness of programs, we need to prove goals P ` cwp e {Φ}. To
prove such a goal, one has to repeatedly apply the rules for weakest preconditions,
intertwined with logical reasoning. In this section we will automate this process for
λMC by means of a verification condition generator (vcgen).

As a first attempt to define a vcgen, one could try to recurse over the expression e

and apply the rules in Figure 3.3 eagerly. This would turn the goal into a separation
logic proposition that subsequently should be solved. However, as we pointed out
in Section 3.5.1, the resulting separation logic proposition will be very difficult to
prove—either interactively or automatically—due to the existentially quantified
postconditions that appear because of uses of the rules for binary operators (e.g.,
cwp-bin-op). We then proposed alternative rules that avoid the need for existential
quantifiers. These rules look like:

R ` cwp e2 {v2. Q −∗ Φ (v1 J}K v2)}
P ` cwp (e1 } e2) {Φ}

To use this rule, the crux is to symbolically execute e1 with precondition P into a sym-
bolic execution triple (v1,Q,R), which we alluded could be automatically computed
by means of the symbolic executor if e1 ∈ expr (Section 3.5.2).

We can only use the symbolic executor if P is of the shape JmK for a symbolic
heap m. However, in actual program verification, the precondition P is hardly ever
of that shape. In addition to a series of points-to connectives (as described by a
symbolic heap), we may have arbitrary propositions of separation logic, such as
pure facts, abstract predicates, nested Hoare triples, Iris ghost state, etc. These
propositions may be needed to prove intermediate verification conditions, e.g., for
function calls. As such, to effectively apply the above rule, we need to separate our
precondition P into two parts: a symbolic heap JmK and a remainder P ′. Assuming
forward(m,e1) = (v1,m

o
1,m1), we may then use the following rule:

P ′ ∗ Jm1K ` cwp e2
{
v2. Jmo1K −∗ Φ (v1 J}K v2)

}
P ′ ∗ JmK ` cwp (e1 } e2) {Φ}

It is important to notice that by applying this rule, the remainder P ′ remains in our
precondition as is, but the symbolic heap is changed from JmK into Jm1K, i.e., into the
frame that we obtained by symbolically executing e1.

Having applied the above rule, we could proceed recursively on the structure of
the expression. For example, if e2 is an assignment operator e′

1
=e′

2
, we could use the

66

3.6. A verification condition generator for λMC

following rule:

P ′ ∗ Jm2K ` cwp e
′
2
{
v
′
2. Jm

o
2K −∗ ∃w. l ↪−−→U w ∗ (l ↪−−→L v

′
2 −∗ Φ

′
v
′
2)
}

P ′ ∗ Jm1K ` cwp (e′1=e
′
2)

{
Φ ′

}
Under the proviso forward(m1,e

′
1
) = (l,mo2,m2) with l ∈ Loc. Again, we see that the

remainder P ′ is kept, while the symbolic heap is updated—the precondition is thus
again in the right shape to apply a similar rule for e′2.

It should come as no surprise that we can automate this process, by applying rules,
such as the ones we have given above, recursively, and threading through symbolic
heaps. Formally, we do this by defining the vcgen as a total function: vcg : (sheap×
expr × (sheap→ val→ iProp))→ iProp where iProp is the type of propositions of
our logic. The definition of vcg is given in Figure 3.8. Before explaining the details,
let us state its correctness theorem:

Theorem 3.4. Given an expression e, a symbolic heap m, and a postcondition Φ , the
following statement holds:

P ′ ` vcg(m,e,λm′ v. Jm′K −∗ Φ v)

P ′ ∗ JmK ` cwp e {Φ}

This theorem reflects the general shape of the rules we previously described. We
start off with a goal P ′ ∗ JmK ` cwp e {Φ}, and after using the vcgen, we should prove
that the generated goal follows from P ′ . It is important to note that the continuation
in the vcgen is not only parameterized by the return value, but also by a symbolic
heap corresponding to the resources that remain. To get these resources back, the
vcgen is initiated with the continuation λm′ v. Jm′K −∗ Φ v.

Most clauses of the definition of the vcgen (Figure 3.8) follow the approach we
described so far. For unary expressions like load we generate a condition that corre-
sponds to the weakest precondition rule. For binary expressions, we symbolically
execute either operand, and proceed recursively in the other. There are a number of
important bells and whistles that we will discuss now.

3.6.1 Sequencing

In the case of sequenced binds x← e1 ;e2, we recursively compute the verification
condition for e1 with the continuation:

λm′ v.U (vcg(unlock(m′),e2[v/x],K)) .

Due to a sequence point, all locations modified by e1 will be in the unlocked state
after it is finished executing. Therefore, in the recursive call to e2 we unlock all
locations in the symbolic heap (c.f. unlock(m′)), and we include a U modality in the
continuation. The U modality is crucial so that the resources that are not given to the
vcgen (the remainder P ′ in Theorem 3.4) can also be unlocked.

67

3. λMC: a logic for non-determinsim in C expressions

vcg(m,v,K),Km v

vcg(m,e1 } e2,K),
vcg(m2,e2,λm

′ v2.K (m′ tmo) (v1 } v2)) if forward(m,e1) = (v1,mo,m2)

vcg(m1,e1,λm
′ v1.K (m′ tmo) (v1 } v2)) if forward(m,e1) =⊥ and

forward(m,e2) = (v2,mo,m1)

JmK −∗ cwp (e1 } e2) {Kret} otherwise

vcg(m,*e,K), vcg(m,e,K′)

with K′ , λml.

Km w if l ∈ Loc and m(l) = (U,q,w)

JmK −∗ ∃w q. l
q

↪−−→U w ∗ (l
q

↪−−→U w −∗ Kret w) otherwise

vcg(m,e1=e2,K),
vcg(m2,e2,λm

′ v.K′ (m′ tmo)(l,v)) if forward(m,e1) = (l,mo,m2)

vcg(m1,e1,λm
′ l.K′ (m′ tmo)(l,v)) if forward(m,e1) =⊥ and

forward(m,e2) = (v,mo,m1)

JmK −∗ cwp (e1=e2) {Kret} otherwise

with K′ , λm(l,v).K (m′ t {l 7→ (L,1,v)}) v if l ∈ Loc and delete_full(l,m) =m′

JmK −∗ ∃w. l ↪−−→U w ∗ (l ↪−−→L v −∗ Kret v) otherwise

vcg(m,x← e1 ;e2,K), vcg(m,e1,λm
′
v.U (vcg(unlock(m′),e2[v/x],K)))

Auxiliary functions:

Kret : val→ iProp, λw. (∃m′ . Jm′K ∗Km′ w) unlock(m),
⊔

l∈dom(m)
m(l)=(_,q,v)

{l 7→ (U,q,v)}

Figure 3.8: Selected cases of the verification condition generator.

3.6.2 Handling failure

In the case of binary operators e1 } e2, it could be that the symbolic executor fails on
both e1 and e2, because neither of the arguments were of the right shape (i.e., not an
element of expr), or the required resources were not present in the symbolic heap. In
this case the vcgen generates the goal of the form JmK −∗ cwp (e1 } e2) {Kret} where
Kret , λw. ∃m′ . Jm′K ∗Km′ w. What appears here is that the current symbolic heap
JmK is given back to the user, which they can use to prove the weakest precondition

68

3.7. Discussion

of e1 } e2 by hand. Through the postcondition ∃m′ . Jm′K ∗Km′ w the user can resume
the vcgen, by choosing a new symbolic heap m′ and invoking the continuation Km′ w.

For assignments e1=e2 we have a similar situation. Symbolic execution of both e1
and e2 may fail, and then we generate a goal similar to the one for binary operators.
If the location l that we wish to assign to is not in the symbolic heap, we use the
continuation JmK −∗ ∃w. l ↪−−→U w∗(l ↪−−→L v −∗ Kret v). As before, the user gets back the
current symbolic heap JmK, and could resume the vcgen through the postcondition
Kret v by picking a new symbolic heap.

3.7 Discussion

In this section we discuss some extensions of the λMC language, the logic, and the
vcgen that we have implemented in the Coq formalization.

3.7.1 Extensions of the language

The memory model that we have presented in this paper was purposely oversimpli-
fied. In the Coq formalization, the memory model for λMC additionally supports
mutable local variables, arrays, and pointer arithmetic. Adding support for these fea-
tures was relatively easy and required only local changes to the definitional semantics
and the separation logic.

For implementing mutable local variables, we tag each location with a Boolean
that keeps track of whether it is an allocated or a local variable. Using this tag we
disallow the free(−) operation to deallocated local variables.

Our extended memory model is block/offset-based like CompCert’s memory
model [LB08]. Pointers are not simply represented as locations, but as pairs (`, i),
where ` is a HeapLang reference to a memory block containing a list of values, and
i is an offset into that block. The points-to connectives of our separation logic then
correspondingly range over block/offset-based pointers.

3.7.2 Symbolic execution of sequence points

We have adapted our forward algorithm to handle sequenced bind operators x←
e1 ;e2. The subtlety lies in supporting nested sequenced binds. For example, in
an expression (x← e1 ;e2) + e3 the postcondition of e1 can be used (along with
the frame) for the symbolic execution of e2, but it cannot be used for the symbolic
execution of e3. In order to solve this, our forward algorithm takes a stack of symbolic
heaps as an input, and returns a stack of symbolic heaps (of the same length) as a
frame. All the cases shown in Figure 3.7 are easily adapted w.r.t. this modification,
and the following definition captures the case for the sequence point bind:

forward(~m,x← e1 ;e2), (v2,m
o
2 tm′ , ~m2)

where (v1,m
o
1, ~m1) = forward(~m,e1)

(v2,m
o
2,m

′ :: ~m2) = forward(unlock(mo1) :: ~m1,e2[v1/x])

69

3. λMC: a logic for non-determinsim in C expressions

To accommodate for this change, we need to update the auxiliary operations
delete_frac_2 and delete_full_2 to operate on stacks of symbolic heaps. Finally,
at the top level, the verification condition generator invokes forward with a stack
containing a single symbolic heap.

3.7.3 Shared resource invariants

As in Krebbers’s logic [Kre14], the rules for binary operators in Figure 3.3 require the
resources to be separated into disjoint parts for the subexpressions. If both sides of a
binary operator are function calls, then they can only share read permissions despite
that both function calls are executed atomically. Following Krebbers, we address this
limitation by adding a shared resource invariant R to our weakest preconditions and
add the following rules:

cwp-add-resource

R1 cwpR1∗R2
e {v. R1 −∗ Φ v}

cwpR2
e {Φ}

cwp-call

f(x){e} defined
R −∗ U(cwpTrue e[x/v] {w. R ∗Φ w})

cwpR f(v) {Φ}

wpm-add-resource

R1 mwpR1∗R2
e {v. R1 −∗ Φ v}

cwpR2
e {Φ}

wpm-atomic

R −∗ ∃Q. Q ∗mwpQ
(
v ()

)
{w. Q −∗ R ∗Φ(w)}

mwpR atomic v {Φ}

wpm-atomic-env

∀env. env_inv(env) ∗R −∗ wp (v env) {w. env_inv(env) ∗R ∗Φ w}
mwpR atomic_env v {Φ}

To temporarily transfer resources into the invariant, one can use the rule cwp-add-

resource. Because function calls are not interleaved, one can use the rule cwp-call to
gain access to the shared resource invariant for the duration of the function call. The
new cwp rules are derived from the new mwp rules wpm-add-resource, wpm-atomic,
and wpm-atomic-env.

Our handling of shared resource invariants generalizes the treatment by Krebbers:
using custom ghost state in Iris we can endow the resource invariant with a protocol.
This allows us to verify examples that were previously impossible [Kre14]:

int f(int *p, int y) { return (*p = y); }
int main() { int x; f(&x, 3) + f(&x, 4); return x; }

Krebbers could only prove that main returns 0, 3 or 4, whereas we can prove it returns
3 or 4 by combining resource invariants with Iris’s ghost state. We can do this by
establishing a protocol on the location x, stating that the value of x cannot become 0
once it has been set to 3 or 4.

To support shared resource invariants in cwpR e {Φ}, we had to develop and prove
a novel expressive specification for locks/mutexes. For the reasons of space we do
not present the specification here, and refer the reader to the Coq formalization.

70

3.8. Related work

3.7.4 Implementation in Coq

In the Coq development [FGK19b] we have:
• Defined λMC with the extensions described above, as well as the monadic

combinators, as a shallow embedding on top of Iris’s HeapLang [Jun+18b;
Iri20].

• Modeled the separation logic for λMC and the monadic combinators as a shallow
embedding on top of the Iris’s program logic for HeapLang.

• Implemented the symbolic executor and vcgen as computable Coq functions,
and proved their soundness w.r.t. our separation logic.

• Turned the verification condition generator into a tactic that integrates into the
Iris Proof Mode/MoSeL framework [KTB17; Kre+18].

This last point allowed us to leverage the existing machinery for separation logic
proofs in Coq. Firstly, we get basic building blocks for implementing the vcgen tactic
for free. Secondly, when the vcgen is unable to solve the goal, one can use the Iris
Proof Mode/MoSeL tactics to help out in a convenient manner.

To implement the symbolic executor and vcgen, we had to reify the terms and
values of λMC. To see why reification is needed, consider the data type for symbolic
heaps, which uses locations as keys. In proofs, those locations appear as univer-
sally quantified variables. To compute using these, for example when performing
operations on symbolic heaps, we need to reify them into some symbolic representa-
tion. We have implemented the reification mechanism using type classes, following
Spitters and van der Weegen [SV11].

With all the mechanics in place, our vcgen is able to aid us significantly. Consider
the following program that copies the contents of one array into another:

int arraycopy(int *p, int *q, int n) {
int pend = p + n;
while (p < pend) { *(p++) = *(q++); }

}

We proved
{
p 7→ ~x ∗ q 7→ ~y ∗ (|~x| = |~y| = n)

}
arraycopy(p,q,n)

{
p 7→ ~y ∗ q 7→ ~y

}
in 11

lines of Coq code. The vcgen can automatically process the program up until the
while loop. At that point, the user has to manually perform an induction on the
array, providing a suitable induction hypothesis. The vcgen is then able to discharge
the base case automatically. In the inductive case, it will automatically process the
program until the next iteration of the while loop, where the user has to apply the
induction hypothesis.

3.8 Related work

3.8.1 C semantics

There has been a considerable body of work on formal semantics for the C lan-
guage, including several large projects that aimed to formalize substantial subsets
of C [Nor98; Ler09; ER12; HER15; Mem+16; Kre15], and projects that focused on

71

3. λMC: a logic for non-determinsim in C expressions

specific aspects like its memory model [Mem+16; Kre13; Kre16; LB08; Coh+09b;
Kan+15; Cao+18; Mem+19], weak memory concurrency [Bat+11; Lah+17; NMS16],
non-local control flow [KW13], verified compilation [Ler09; Ste+15], etc.

The focus of this paper—non-determinism in C expressions—has been treated
formally a number of times, notably by Norrish [Nor98], Ellison and Rosu [ER12],
Krebbers [Kre16], and Memarian et al. [Mem+16]. The first three have in common
that they model the sequence point restriction by keeping track of the locations that
have been written to. The treatment of sequence points in our definitional semantics
is closely inspired by the work of Ellison and Rosu [ER12], which resembles closely
what is in the C standard. Krebbers [Kre16] used a more restrictive version of the
semantics by Ellison and Rosu—he assigned undefined behavior in some corner cases
to ease the soundness theorem of his logic. We directly proved soundness of the logic
w.r.t. the more faithful model by Ellison and Rosu.

Memarian et al. [Mem+16] give a semantics to C by elaboration into a language
they call Core. Unspecified evaluation order in Core is modeled using an unseq
operation, which is similar to our || operation. Compared to our translation, Core is
much closer to C (it has function calls, memory operations, etc. as primitives, while
we model them with monadic combinators), and supports concurrency.

3.8.2 Reasoning tools and program logics for C

Apart from formalizing the semantics of C, there have been many efforts to create
reasoning tools for the C language in one way or another. There are standalone tools,
like VeriFast [JSP10], VCC [Coh+09a], and the Jessie plugin of Frama-C [MM11],
and there are tools built on top of general purpose proof assistants like VST [App14;
Cao+18] in Coq, or AutoCorres [Gre+14] in Isabelle/HOL. Although, admittedly, all
of these tools cover larger subsets of C than we do, as far as we know, they all ignore
non-determinism in expressions.

There are, however, a few exceptions. Norrish proved confluence for a certain
class of C expressions [Nor99]. Such a confluence result may be used to justify proofs
in a tool that does not have an underlying non-deterministic semantics.

Another exception is the separation logic for non-determinism in C by Kreb-
bers [Kre14]. Our work is inspired by his, but there are several notable differences:

• We have proved soundness with respect to a definitional semantics for a subset
of C. We believe that this approach is more modular, since the semantics can be
specified at a higher level of abstraction.

• We have built our logic on top of the Iris framework. This makes the devel-
opment more modular (since we can use all the features as well as the Coq
infrastructure of Iris) and more expressive (as shown in Section 3.7).

• Reasoning in Krebbers’s logic directly was infeasible. There was no automation
like our vcgen, so one had to subdivide resources between subexpressions
manually all the time. Also, there was not even tactical support for carrying
out proofs manually. Our logic is redesigned to get such support from the Iris
Proof Mode/MoSeL framework.

72

3.8. Related work

To handle missing features of C as part of our vcgen, we plan to explore ap-
proaches by other verification projects in proof assistants. A notable example of
such a project is VST, which supports machine arithmetic [DA13] and data types like
structs and unions [Cao+18] as part of its tactics for symbolic execution.

3.8.3 Separation logic and symbolic execution

In their seminal work, Berdine et al. [BCO05] demonstrate the application of sym-
bolic execution to automated reasoning in separation logic. In their setting, frame
inference is used to perform symbolic execution of function calls. The frame has to
be computed when the call site has more resources than needed to invoke a function.
In our setting we compute frames for subexpressions, which, unlike functions, do
not have predefined specifications. Due to that, we have to perform frame infer-
ence simultaneously with symbolic execution. The symbolic execution algorithm
of Berdine et al. can handle inductive predicates, and can be extended with shape
analysis [DOY06]. We do not support such features, and leave them to future work.

Caper [Din+17] is a tool for automated reasoning in concurrent separation logic,
and it also deals with non-determinism, although the nature of non-determinism in
Caper is different. Non-determinism in Caper arises due to branching on unknown
conditionals and due to multiple possible ways to apply ghost state related rules
(rules pertaining to abstract regions and guards). The former cause is tackled by
considering sets of symbolic execution traces, and the latter is resolved by employing
heuristics based on bi-abduction [Cal+11]. Applications of abductive reasoning to
our approach to symbolic execution are left for future work.

Recently, Bannister et al. [BHK18; BH18] proposed a new separation logic con-
nective for performing forwards reasoning whilst avoiding frame inference. This
approach, however, is aimed at sequential deterministic programs, focusing on a
notion of partial correctness that allows for failed executions. Another approach
to verification of sequential stateful programs is based on characteristic formu-
lae [Cha11]. A stateful program is transformed into a higher-order logic predicate,
implicitly encoding the frame rule. The resulting formula is then proved by a user in
Coq.

When implementing a vcgen in a proof assistant (see e.g., [Mal14; Cao+18]) it is
common to let the vcgen return a new goal when it gets stuck, from which the user
can help out and call back the vcgen. The novelty of our work is that this approach is
applied to operations that are called in parallel.

73

4ReLoC: a logic for proving

contextual refinements

4.1 Introduction

A fundamental question in computer science is when two programs are equivalent? The
“golden standard” of program equivalence is contextual equivalence, stated directly in
terms of the operational semantics. Intuitively, expressions e and e′ are contextually
equivalent if no well-typed client can distinguish them, which formally means that
for all well-typed contexts C, the expression C[e] has same observable behaviors as
C[e′]. Contextual equivalence can be further decomposed into contextual refinement.
An expression e contextually refines e′ if, for all contexts C, if C[e] has some observable
behavior, then so does C[e′]. Expressions e and e′ are contextually equivalent iff e
contextually refines e′ and vice versa.

Contextual refinement and contextual equivalence have many applications in
computer science. One such application is to specify programs in terms of other
programs. For example, one can specify an implementation of a program module
(say, a map) that internally uses an efficient but complicated data structure (say, a
balanced search tree) by stating that it refines an implementation that internally
uses an inefficient but easy to understand data structure (say, an unordered list). In
the context of a typed language that supports data abstraction, a specification of a
program module in terms of refinement shows that clients of the program module
cannot depend on the internal representation of data. This can be seen as an instance
of the representation independence principle [Rey74; Mit86].

In the context of concurrency, contextual refinement is often used to specify a
fine-grained concurrent program module by stating that it contextually refines a
coarse-grained version. This is similar to showing that a fine-grained program module
is linearizable [HW90; Fil+10], i.e., each fine-grained operation appears to take place
instantaneously. A simple example is the specification of a fine-grained concurrent
counter by a coarse-grained one, see Figure 4.1 for the code. The increment operation
of the fine-grained version, counteri , takes an “optimistic” lock-free approach to
incrementing the value using a compare-and-set operation inside a loop. If the
value of the counter has been changed (for instance, by some other thread), then the
fine-grained counter reattempts the increment from the beginning. The increment
operation of the coarse-grained version, counters, is performed inside a critical

75

4. ReLoC: a logic for proving contextual refinements

Fine-grained grained version (i.e., the implementation):

read, λc. !c

inci , rec inc c = let n = !c in

if CAS(c,n,1 +n) then n else inc c

counteri , let c = ref(0) in ((λ(). read c), (λ(). inci c))

Coarse-grained version (i.e., the specification):

incs , λc l. acquire l; let n = !c in c← (1 +n); release l; n

counters , let l = newlock () in let c = ref(0) in ((λ(). read c), (λ(). incs c l))

Figure 4.1: A fine-grained and coarse-grained concurrent counter. (Note that the
read operation is shared by both.)

section guarded by a lock. We can state the desired refinement as follows:

counteri -ctx counters : (unit→ int)× (unit→ int).

Due to the instrumentation of the coarse-grained version with locks, this refinement
expresses that each operation of the fine-grained version takes place instantaneously.
We will use the counter as a simple running example throughout the paper.

Another application of contextual refinement and contextual equivalence is to
state algebraic properties of program constructs. For example, let us consider the
non-deterministic choice operator e1 ⊕ e2, which non-deterministically executes the
expression e1 or e2. Using contextual equivalence, we can state that this operator
is commutative (e1 ⊕ e2 'ctx e2 ⊕ e1), associative (e1 ⊕ (e2 ⊕ e3) 'ctx (e1 ⊕ e2) ⊕ e3),
and that sequential composition distributes over the operator ((e1 ⊕ e2);e3 'ctx
(e1;e3) ⊕ (e2;e3)).

Proving contextual refinement and contextual equivalence

Contextual refinement e -ctx e
′ : τ (and contextual equivalence e 'ctx e

′ : τ) are
very strong notions because they relate the expressions e and e′ in any well-typed
context C with a hole of type τ . As a consequence, proving contextual refinement
and equivalence directly is challenging—one has to consider arbitrary contexts C,
which are only known to be well-typed. Contextual refinement and equivalence
are therefore typically proved indirectly using approaches based on bisimulations
(e.g., [Gor99; Pit00; KW06; SP07]) or logical relations (e.g., [Pit05; Ahm06; DAB09;
BST12; Tur+13]). In the present paper we focus on approaches based on logical
relations because they scale well to increasingly rich programming languages with
features such as impredicative polymorphism, recursive types, higher-order state,
and fine-grained concurrency.

76

4.1. Introduction

In the approaches based on logical relations, the key is a notion of logical refine-
ment, notation e - e′ : τ . Logical refinement is defined by structural recursion over
the type τ , rather than by quantification over all contexts. The soundness theorem
of logical relations states that logical refinement implies contextual refinement, i.e.,
that e - e′ : τ implies e -ctx e

′ : τ . As a result, proving contextual refinement can be
reduced to proving logical refinement, which is generally much easier.

Unfortunately, it is difficult to construct a suitable notion of logical refinement
when considering language features like recursive types and higher-order state. In
the presence of (general) recursive types, no structurally-recursive definition over the
type exists, and in the presence of higher-order references, one needs some notion of
recursively-defined worlds [Bir+11]. The technique of step-indexing [AAV02; Ahm04]
has been used to stratify the definitions using recursion over a natural number, called
the step-index, which corresponds to the number of computation steps performed by
the program.

Step-indexing has shown to be very effective by a large body of work on step-
indexed logical relations, e.g., [NDR11; HD11; BST12; ÇPG16; RG18]. However, defi-
nitions and proofs are intricate because step-indices appear practically everywhere—
they even appear in definitions and proofs related to language features (say, products
or sums) for which step-indexing is orthogonal. Dreyer et al.thus proposed the “logi-
cal approach” to logical relations [DAB09; Dre+10] to hide step-indices by abstracting
and internalizing them in a modal logic using the later modality (.) [App+07]. Turon
et al. [Tur+13; TDB13] further developed the logical approach by using separation
logic [ORY01; OHe07; Bro07] to abstract over program states and to handle (fine-
grained) concurrency.

More recently, Krebbers et al. [KTB17] and Timany [Tim18] defined a logical
relation for program refinement based on the work of Turon et al.in the state-of-the-
art higher-order concurrent separation logic Iris [Jun+18b; Jun+15; Jun+16; Kre+17].
Iris supports impredicative invariants [SB14] and used-defined ghost state, which
can be used to streamline the definition of the logical relation, and to carry out proofs
of challenging program refinements. The meta theory of Iris is mechanized in the
Coq proof assistant, and Iris comes equipped with a proof mode [KTB17; Kre+18]—
an extensive set of Coq tactics for separation logic proofs—which allowed them to
mechanize all their results in Coq.

Problem statement and key idea

To prove refinements of complicated program modules in a scalable fashion, it is
important to decompose refinement proofs into smaller refinements that can be
proved in isolation. As a simple example, let us consider the refinement of the
fine-grained and coarse-grained concurrent counter from Figure 4.1:

counteri -ctx counters : (unit→ int)× (unit→ int).

We wish to decompose the proof of this refinement into refinements for the read and
increment operations. Naively, one might consider proving contextual refinements
for these operations. Unfortunately, such contextual refinements do not hold—they

77

4. ReLoC: a logic for proving contextual refinements

only hold conditionally under the assumption that the internal state in both of the
implementations is related (including the state of the lock used by the coarse-grained
version).

Instead of performing composition at the level of contextual refinement, our key
idea is to perform composition at the level of logical refinement. By generalizing
logical refinement to become an internal (i.e., first-class) notion in (the Iris) sepa-
ration logic, we can use the connectives of separation logic to express conditional
refinements. Logical refinements for the operations of the concurrent counter are as
follows:

Icnt −∗ (λ(). read ci)- (λ(). read cs) : unit→ int

Icnt −∗ (λ(). inci ci)- (λ(). incs cs lk) : unit→ int.

We use the magic wand (−∗, also known as separating implication) to make these
refinements conditional under the invariant Icnt (expressed using Iris’s invariant
connective I), which is defined as Icnt , ∃n ∈ N. ci 7→i n ∗ cs 7→s n ∗ isLocks(lk, false).
The invariant Icnt intuitively expresses that in between function calls, the
values of both counters are equal, and the lock (used in the coarse-grained
implementation) is in unlocked state. With logical refinements for the indi-
vidual operations at hand, we can compose them into the logical refinement
counteri - counters : (unit→ int)× (unit→ int), which using soundness gives us the
desired contextual refinement counteri -ctx counters : (unit→ int)× (unit→ int).

Treating logical refinement as an internal notion in separation logic succinctly
distinguishes our work from prior work. In prior work on refinements for rich
languages, e.g., the aforementioned work by Turon et al. [Tur+13; TDB13], Krebbers
et al. [KTB17], and Timany [Tim18], logical refinement is an external notion (i.e., a
proposition in ordinary mathematics, rather than in separation logic), which means
that one cannot concisely state refinements that are conditional on the program state.
To state and prove such refinements, one needs to unfold the definition of the logical
refinement into the model.

Apart from being able to decompose refinement proofs, internalizing logical
refinement gives us a number of other tangible benefits. First, it allows us to de-
velop type-directed structural rules and symbolic execution rules for proving logical
refinements. Our symbolic execution rules closely resemble the typical rules for
symbolic execution in separation logic, but come in two forms: for the program on
the left-hand side and right-hand side of the refinement, making it possible to write
concise proofs.

Second, by internalizing logical refinement we can state logical refinements that
apply to the situation when the expression on the one side of the refinement contains
a program subject to specification, while the expression on the other side is arbitrary.
We call such specifications relational specifications. Relational specifications take
the ability to decompose refinement proofs one step further. As a simple example,
let us consider the example from Figure 4.1, where we proved that a fine-grained
concurrent counter refines a coarse-grained version. This refinement is insufficient if
we want to prove that a program module that uses internally the fine-grained counter
(say, a ticket lock) refines another module that does not use the coarse-grained counter

78

4.1. Introduction

(say, a spin lock). However, we can instead formulate a relational specification for the
program module that is proven just once, and derive different logical (and thus by
soundness, contextual) refinements from it.

A key challenge in stating relational specifications for operations is to concisely
capture that they behave as-if they were atomic, i.e., they appear to take place instan-
taneously. There has been a long line of work on logically atomic specifications to reason
about atomicity in the context of Hoare-style logics [JP11; SBP13; RDG14; Jun+15;
Jun+20]. We show that such logically atomic specifications generalize to the relational
case, and call them logically atomic relational specifications. Concretely, we introduce
relational specification patterns based on da Rocha Pinto et al.’s TaDA-style [RDG14]
and Svendsen et al.’s HOCAP-style [SBP13] logically atomic specifications.

The ReLoC logic

Based on the previously described key ideas, we develop a relational separation
logic called ReLoC. ReLoC is built on top of Iris, allowing the user to leverage
the features of Iris such as invariants, (higher-order) ghost state, and prophecy
variables. Invariants and ghost state state are powerful mechanisms that support
reasoning about concurrent programs through used-defined protocols. Prophecy
variables [AL91; Jun+20] allow for speculative reasoning about the future state
of concurrent programs. In Iris they come in the form of ghost variables whose
value can be referenced before they are specified, thus allowing one to “prophesize”
their potential value. We show how these features can be used in ReLoC to prove
challenging refinements.

We have implemented ReLoC as a shallow embedding on top of Iris in
Coq [KTB17; Kre+18]. In addition to mechanizing all meta-theoretic results of
ReLoC, like its soundness theorem, we have implemented new tactics that support
mechanized interactive reasoning about program refinements in ReLoC in a practical
and modular way. To our knowledge, ReLoC is the first fully mechanized relational
logic enabling reasoning about contextual refinements of programs in a fine-grained
concurrent higher-order imperative programming language. The mechanization can
be found at [FKB21a].

Contributions and structure of the paper

• We present a relational logic ReLoC for reasoning about contextual refinements
of fine-grained concurrent higher-order imperative programs. We present our
target programming language (Section 4.2), an overview of ReLoC (Section 4.3),
and a detailed description of its type-directed structural rules and symbolic
execution rules (Section 4.4).

• We introduce relational specification patterns based on TaDA [RDG14] and
HOCAP-style [SBP13] logically atomic specifications (Section 4.5).

• We show how to integrate prophecy variables into ReLoC, thereby enabling
speculative reasoning in proofs of program refinements (Section 4.6).

• We describe the logical relations model of ReLoC in Iris (Section 4.7).

79

4. ReLoC: a logic for proving contextual refinements

• We describe the mechanization of ReLoC in Coq, and explain how we support
mechanized interactive reasoning in ReLoC in a practical and modular way
(Section 4.8).

We discuss further related work in Section 4.9 and conclude in Section 4.10.
In addition to the case studies presented in this paper, we have also verified a

collection of refinements of concurrent programs from the literature. We give a brief
overview of these examples in Section 4.10.1; and the proofs can be found in the
accompanying Coq sources.

Differences with the conference version of this paper

In the conference version of this paper [FKB18] we described the first version of
ReLoC. This paper extends the conference paper in two ways. First, we introduce
ReLoC Reloaded (in this paper referred to as just ReLoC), which has several new
features, especially in terms its Coq mechanization. Second, we have expanded the
presentation of, as well as the material covered by, the paper significantly. Concretely,
ReLoC Reloaded has the following new features compared to its original version:

• ReLoC Reloaded’s primitive refinement judgment e - e′ : τ is defined for closed
expressions (i.e., without free variables), and the version for open expressions
(i.e., with free variables) is a derived notion (see Definition 4.5).

• ReLoC Reloaded’s underlying programming language is HeapLang—the default
language of Iris’s Coq mechanization. By having a tight integration of ReLoC
with Iris’s Coq ecosystem we managed to reuse more Coq code and integrate
novel Iris features.

• One such feature that we have integrated into ReLoC Reloaded is the support
for prophecy variables (Section 4.6), which was recently added to Iris [Jun+20].

Compared to the conference paper, we have significantly expanded Sections 4.2,
4.4 and 4.8, and added Sections 4.6, 4.7 and 4.10.2, which are completely new. We
have extended Section 4.5 with HOCAP-style specifications, which we put into action
by verifying a refinement between a ticket lock and a spin lock in Section 4.5.5.

4.2 The programming language

We consider a typed version of HeapLang, the default language that is shipped with
Iris’s Coq development [Iri20]. HeapLang is a call-by-value λ-calculus, with higher-
order references, fork-based unstructured concurrency, and atomic operations for
fine-grained concurrency. We equip the untyped version of HeapLang (which was
given in Chapter 2) with System-F-style types and some corresponding expressions.
The syntax is shown in Figure 4.2. We let α range over a countable infinite set TVar
of type variables, which can be bound by the universal type ∀α.τ , existential type
∃α.τ , and recursive type µα.τ . We omit the usual Boolean and arithmetic operations
such as addition, multiplication, equality, negation.

Most of the operations are the same as in Chapter 2, so we only discuss the newly
added operations. The new operations are type abstraction Λ.e, type application e〈〉;

80

4.2. The programming language

τ ∈ Type ::= unit | bool | int | τ1 × τ2 | τ1 + τ2 | τ1→ τ2 (STLC)

| α | ∀α.τ | ∃α.τ (Polymorphic and existential types)

| µα.τ (Recursive types)

| ref τ (Reference types)

v ∈Val ::= i | ` | true | false | (v1,v2) | inl (v) | inr (v) | rec f x = e i ∈ Z, ` ∈ Loc
| Λ.e (Type abstraction)

| pack v | fold v

e ∈Expr ::= x | v | if e then e1 else e2 | (e1, e2) | πi(e) | inl (e) | inr (e) i ∈ {1,2}
| (match e with inl (x)→ e1 | inr (x)→ e2) | e1(e2)

| e〈〉 (Type application)

| pack e | unpack e1 in x. e2 (Existential types operations)

| fold e | unfold e (Recursive types operations)

| ref(e) | !e | e1← e2 | CAS(e1, e2, e3) (Reference types operations)

| fork {e} | . . .

Figure 4.2: The syntax of the extended HeapLang language.

the pack/unpack constructs for packing/unpacking existential types; the fold/unfold
constructs for iso-recursive types. Type level lambdas and type applications do not
contain type annotations, following e.g., [Ahm06].

Syntactic sugar. We use syntactic sugar to define non-recursive functions, let-
bindings, and sequential composition. We let (λx. e) , (rec _ x = e) and (let x =
e1 in e2) , ((λx. e2) e1) and (e1;e2) , (let _ = e1 in e2). The underscore _ denotes an
anonymous binder, i.e., a fresh variable that is unused in the body of the binding
expression.

Type system. Typing judgments take the form Ξ | Γ ` e : τ , where Γ is a context
assigning types to program variables, and Ξ is a context of type variables. The
inference rules for the typing judgments are standard; a selection of representative
rules is given in Figure 4.3. The typing rule for the compare-and-set (CAS) operation
has a side-condition unboxed(τ), which ensures that a compare-and-set can only be
performed on word-sized data types, i.e., the unit, Boolean, integer, and reference
type.

Operational semantics. Recall from Chapter 2 that the operational semantics con-
sists of three reduction relations: pure head reduction→pure, head reductions −→h,
thread-local reductions −→t, and thread-pool reduction −→tp.

Pure head reductions are head reductions that do not modify the state. They are
the same as in Chapter 2, with the exception of reductions for newly added constructs,

81

4. ReLoC: a logic for proving contextual refinements

Selected typing rules:

var-typed

Γ (x) = τ

Ξ | Γ ` x : τ

proj-typed

Ξ | Γ ` e : τ1 × τ2 i ∈ {1,2}
Ξ | Γ ` πi(e) : τi

rec-typed

Ξ | x :τ1, f :τ1→ τ2,Γ ` e : τ2

Ξ | Γ ` rec f x = e : τ1→ τ2

tlam-typed

Ξ,α | Γ ` e : τ

Ξ | Γ `Λ.e : ∀α.τ

tapp-typed

Ξ | Γ ` e : ∀α.τ Ξ ` τ ′

Ξ | Γ ` e〈〉 : τ[τ ′/α]

tpack-typed

Ξ | Γ ` e : τ[τ ′/α]

Ξ | Γ ` pack e : ∃α.τ

tunpack-typed

Ξ | Γ ` e1 : ∃α.τ1 α,Ξ | x :τ1,Γ ` e2 : τ2 α is not free in Γ or τ2

Ξ | Γ ` unpack e1 in x. e2 : τ2

fold-typed

Ξ | Γ ` e : τ[µτ/α]

Ξ | Γ ` fold e : µα.τ

unfold-typed

Ξ | Γ ` e : µα.τ

Ξ | Γ ` unfold e : τ[µα.τ/α]

alloc-typed

Ξ | Γ ` e : τ

Ξ | Γ ` ref(e) : ref τ

load-typed

Ξ | Γ ` e : ref τ

Ξ | Γ ` !e : τ

store-typed

Ξ | Γ ` e1 : ref τ Ξ | Γ ` e2 : τ

Ξ | Γ ` e1← e2 : unit

cas-typed

Ξ | Γ ` e1 : ref τ Ξ | Γ ` e2 : τ Ξ | Γ ` e3 : τ unboxed(τ)

Ξ | Γ ` CAS(e1, e2, e3) : bool

fork-typed

Ξ | Γ ` e : unit

Ξ | Γ ` fork {e} : unit

New pure reductions e1→pure e2:

(Λ.e)〈〉 →pure e unpack (pack v) in x. e→pure e[v/x] unfold (fold v)→pure v

Figure 4.3: The type system and operational semantics of HeapLang.

as shown in Figure 4.3. Head reductions are lifted to thread-local reductions using
call-by-value evaluation contexts K ∈ ECtx. The evaluation contexts are the same as
evaluations context from Chapter 2, but extended to cover newly added operations:

K ∈ ECtx ::= [•] | e1(K) | K(v2) | e1← K | K ← v2

| K〈〉 | pack K | unpack K in x. e2 | fold K | unfold K | . . .

Thread-pool reductions −→tp are defined on configurations ρ = (~e,σ) consisting of a
state σ (a finite partial map from locations to values) and a thread-pool ~e (a list of
expressions corresponding to the threads) by interleaving, i.e., by picking a thread
and executing it, thread-locally, for one step.

82

4.3. A tour of ReLoC

Contextual refinement. The notion of contextual refinement that we use is stan-
dard (see, e.g., [Pit05] or [Har16, Chapters 46 & 47]). It formalizes the situation
when the set of observations that can be made about the first program is a subset of
observations that can be made about the second program. An observation about a
program are made using a program context C, which is a program with a hole:

C ∈ Ctx ::=� | rec f x = C | C(e2) | e1(C) | Λ.C | C〈〉 | . . .

In contrast with evaluation contexts K , program contexts may contain a hole under
binders.

Since we are in a typed setting, we consider only typed contexts. A program context
is well-typed, denoted as C : (Ξ | Γ ` τ)⇒ (Ξ′ | Γ ′ ` τ ′), if for any term Ξ | Γ ` t : τ we
have Ξ′ | Γ ′ ` C[t] : τ ′ . The typing relation on contexts is standard, and can be derived
from the typing rules in Figure 4.3.

We then define contextual refinement as follows. An expression e1 contextually
refines an expression e2 at type τ , denoted as Ξ | Γ ` e1 -ctx e2 : τ , if no well-typed
program context C resulting in a closed program can distinguish the two:

Ξ | Γ ` e1 -ctx e2 : τ , ∀τ ′ (C : (Ξ | Γ ` τ)⇒ (∅ | ∅ ` τ ′)) v ~ef σ.
(C[e1],∅) −→∗tp (v :: ~ef ,σ) =⇒

∃v′ ~e′f σ
′ . (C[e2],∅) −→∗tp (v′ :: ~e′f ,σ

′).

Contextual equivalence Ξ | Γ ` e1 'ctx e2 : τ is defined as the symmetric closure of
contextual refinement, i.e., (Ξ | Γ ` e1 -ctx e2 : τ)∧ (Ξ | Γ ` e2 -ctx e1 : τ).

Note that contextual refinement only takes termination into account, and does
not require the resulting values v and v′ to be equal. Demanding the equality on
the resulting values would make contextual refinement too strong. For example, the
terms (λx. x+ 1) and (λx. 1 + x) of function type would not be deemed contextually
equivalent, because they terminate to syntactically different values in the empty
program context.

There are, however, equivalent formulations of contextual refinement which
equate the resulting values v and v′ . In order to do that, it is necessary to restrict the
typed context C : (Ξ | Γ ` τ)⇒ (∅ | ∅ ` τ ′) to those for which τ ′ is a directly observable
type, like Booleans or integers. For example, we could have used the following
equivalent1 definition (a variation of true-adequate contextual equivalence from
[Pit05, Exercise 7.5.10]):

∀(C : (Ξ | Γ ` τ)⇒ (∅ | ∅ ` bool)) ~ef σ.

(C[e1],∅) −→∗tp (true :: ~ef ,σ) =⇒ ∃~e′f σ
′ . (C[e2],∅) −→∗tp (true :: ~e′f ,σ

′).

4.3 A tour of ReLoC

This section gives a tour of ReLoC by demonstrating its key logical connectives and
proof rules. We first describe ReLoC’s grammar, soundness statement, and rule format

1Proving that this definition is equivalent to the one presented earlier is not a very complicated, albeit
laborious, task. See the Coq mechanization for the formal proof.

83

4. ReLoC: a logic for proving contextual refinements

(Section 4.3.1). After that, we put ReLoC to action by proving contextual refinements
of two program modules. The first is a bit module, which demonstrates ReLoC’s
type-directed structural rules and symbolic execution rules for reasoning about pure
programs (Section 4.3.3). The second is the concurrent counter module from Sec-
tion 4.1, which involves reasoning about internal state and concurrency. Specifically
we demonstrate how ReLoC is used to reason about stateful programs using sym-
bolic execution (Section 4.3.4.1), concurrency using invariants (Section 4.3.4.2), and
recursive functions and loops using Löb induction (Section 4.3.4.3).

4.3.1 Grammar and soundness

ReLoC is based on higher-order intuitionistic separation logic, and the grammar of
its propositions is:

P ,Q ∈ iProp ::= True | False | ∀x. P | ∃x. P | P ∧Q | P ∨Q | P =⇒ Q

| P ∗Q | P −∗Q | ` 7→i v | ` 7→s v | (∆ |=E e1 - e2 : τ)

| JτK∆(v1,v2) | P N | .P | �P | |VE1 E2 P | . . .

ReLoC is an extension of Iris and therefore includes all connectives of Iris, in
particular, the later modality ., persistence modality �, update modality |VE1 E2 , and

invariant assertion P
N

. We introduce these connectives in passing throughout this
section. Some of these connectives are annotated by invariant masks E ⊆ InvName
and invariant namesN ∈ InvName, which are needed for bookkeeping related to Iris’s
invariant mechanism. Until we introduce invariants in Section 4.3.4.2, we will omit
these annotations. Similarly, we will ignore the later modality . until we explain it in
Section 4.3.4.3.

An essential difference to vanilla Iris is that ReLoC has internal (or first-class)
refinement judgments∆ |= e1 - e2 : τ , which should be read as “the expression e1 refines
the expression e2 at type τ”. Just like contextual refinement, the refinement judgment
in ReLoC is indexed by a type τ . The judgment contains an environment ∆ which
assigns interpretations to type variables. These interpretations are given by an Iris
relation of type Val×Val→ iProp. One such kind of relation, the value interpretation
relation JτK∆(−,−) : Val×Val→ iProp (for each syntactic type τ of HeapLang) will be
discussed in Section 4.4. We elide the contexts ∆ in refinement judgments whenever
they are empty.

The intuitive meaning of ∆ |= e1 - e2 : τ is that e1 is safe, and all of its behaviors
can be simulated by e2. It is a simulation in the sense that any execution step of e1
can be matched by a (possibly empty) sequence of execution steps of e2. Borrowing
the terminology from languages with non-determinism, we think of e1 as being
demonic and e2 as being angelic. That is, the non-deterministic choices of e1 (e.g.,
scheduling of forked-off threads) are selected by an external demon; whereas for the
non-deterministic choices of e2, an angle blesses the person proving the refinement
with an ability to select a choice themselves.

Since we often use refinement judgments to specify programs, we refer to the
left-hand side e1 as the implementation, and to right-hand side e2 as the specification.

84

4.3. A tour of ReLoC

The intuitive meaning is formally reflected by the soundness theorem w.r.t. contextual
refinement.

Theorem 4.1 (Soundness). If the refinement judgment ∅ |= e1 - e2 : τ is derivable in
ReLoC, then ∅ | ∅ ` e1 -ctx e2 : τ .

In this section we only consider closed programs e1 and e2; we will see how ReLoC
(and its soundness theorem) generalize to open terms in Section 4.4.4.

Like ordinary separation logic, ReLoC has heap assertions. Since ReLoC is rela-
tional, these come in two forms: ` 7→i v and ` 7→s v, which signify ownership of a
location ` with value v on the implementation and specification side, respectively.

Contrary to earlier work on logical refinements in Iris, e.g., [KTB17; Tim18],
refinement judgments ∆ |= e1 - e2 : τ in ReLoC are first-class propositions. As such,
we can combine them in arbitrary ways with the other logical connectives, and state
conditional refinements. For example, the proposition

(`1 7→i v1 ∗ `2 7→s v2 ∗∆ |= e′1 - e
′
2 : σ) −∗ ∆ |= e1 - e2 : τ, (4.1)

states that the e1 refines e2, under the assumption of another refinement and that
certain locations have specified values in the heap. Having conditional refinements
is crucial for modularity, as it allows us to formulate and prove refinements of
individual methods of a data structure under the assumptions provided by the
internal invariant of the data structure. The fact that refinement judgments are first
class also plays an important role in the presentation of ReLoC’s proof rules.

4.3.2 Derivability and inference rules

As standard in logic, Iris/ReLoC has a derivability relation P ` Q. We say that Q
is derivable if True ` Q. In many situations, we use magic wand −∗ instead of the
derivability relation `, because we have the standard deduction property:

P `Q −∗ R iff P ∗Q ` R

Most of the inference rules we present can be internalized as ReLoC propositions by
a magic wand or a derivability relation between the separating conjunction of the
antecedents and the consequent. We thus use the following notations:

P1 · · · Pn
Q

is notation for (P1 ∗ · · · ∗ Pn) −∗Q,

P

Q
is notation for (P −∗Q)∧ (Q −∗ P).

For instance, the conditional refinement in Formula (4.1) is presented as the following
inference rule:

`1 7→i v1 `2 7→s v2 ∆ |= e′1 - e
′
2 : σ

∆ |= e1 - e2 : τ

85

4. ReLoC: a logic for proving contextual refinements

In rules like this, it is useful to think of premises `1 7→i v1 and `2 7→s v2 as side
conditions, and of the premise ∆ |= e′1 - e

′
2 : σ as the new goal that you get when

you apply the rule. This backwards-style reasoning integrates well in the Coq proof
assistant; we discuss it more in detail in Section 4.8.

We use the derivability relation ` explicitly to state rules that cannot be internal-

ized, e.g.,
` P
`Q

states that if P is derivable, then Q is derivable. This is weaker than
P

Q
,

which denotes that Q can be derived from P , i.e., P `Q.

4.3.3 Example: Contextual equivalance of a bit module

We demonstrate the basic usage of ReLoC by using its type-directed structural and
symbolic execution rules to prove contextual equivalence of two implementations of
a simple program module (representation independence). The module we consider
represents a single bit data structure—it contains an initial value for the bit, an
operation for flipping the bit, and an operation for converting the values of the
abstract type to Booleans. We use an existential type (i.e., abstract type) to hide the
representation type and thus the type of the module:

TBit, ∃α.α × (α→ α)× (α→ bool).

Perhaps the simplest implementation of the bit interface is the one that uses
Booleans for the internal state:

bitbool : TBit, pack(true, (λb.¬b), (λb. b)).

The second implementation models a bit by a number from the set {0,1}:

flipnat : int→ int, λn. if (n = 0) then 1 else 0

bitnat : TBit, pack(1,flipnat, (λn. n = 1)).

Before we explain how the contextual equivalence of these two implementation is
formally proved in ReLoC, let us informally discuss why these implementations are
equivalent. Note that the underlying types (int and bool) are not isomorphic. This,
however, is not going to be a problem, because the underlying types are hidden/exis-
tentially abstracted in the module signature. As a consequence of that, a (well-typed)
client has to be polymorphic in the type α, and can thus only create and modify values
of α through the functions provided by the module. A client that uses the bitnat
module can only construct integers 0 and 1 (using the initial value and applying
the flip function a number of times). Thus, requiring an isomorphism between the
underlying types is too strict—for example, we do not care what Boolean value an
integer 7 might correspond to, because the number 7 can never be constructed using
the functions provided by bitnat.

This intuitive reasoning signals the key idea behind the representation independence
principle [Mit86], which states that in order to prove that two modules are equivalent,
it suffices to pick a relation between the underlying types and demonstrate that all
the methods preserve this relation. For this example, a sensible candidate for such a

86

4.3. A tour of ReLoC

Value interpretation rules:

val-var

∆(α)(v1,v2)

JαK∆(v1,v2)

val-unit

v1 = v2 = ()

JunitK∆(v1,v2)

val-bool

∃b ∈ B. v1 = v2 = b

JboolK∆(v1,v2)

val-int

∃n ∈ Z. v1 = v2 = n

JintK∆(v1,v2)

Type-directed structural rules:

rel-return

JτK∆(v1,v2)

∆ |= v1 - v2 : τ

rel-pair

∆ |= e1 - e2 : τ ∆ |= e′1 - e
′
2 : σ

∆ |= (e1, e
′
1)- (e2, e

′
2) : τ × σ

rel-pack

∀v1,v2. persistent(R(v1,v2)) [α := R] ,∆ |= e1 - e2 : τ

∆ |= pack e1 - pack e2 : ∃α.τ

rel-rec

�
(
∀v1,v2. JτK∆(v1,v2) −∗ ∆ |= (rec f1 x1 = e1) v1 - (rec f2 x2 = e2) v2 : σ

)
∆ |= (rec f1 x1 = e1)- (rec f2 x2 = e2) : τ→ σ

Symbolic execution rules:

rel-pure-l

e1→pure e
′
1 .(∆ |= K[e′1]- e2 : τ)

∆ |= K[e1]- e2 : τ

rel-pure-r

e2→pure e
′
2 ∆ |=E e1 - K[e′2] : τ

∆ |=E e1 - K[e2] : τ

rel-alloc-l’

∀`. ` 7→i v −∗ ∆ |= K[`]- e2 : τ

∆ |= K[ref(v)]- e2 : τ

rel-alloc-r

∀`. ` 7→s v −∗ ∆ |=E e1 - K[`] : τ

∆ |=E e1 - K[ref(v)] : τ

rel-load-l-inv

P
N (

.P ∗ closeInvN (P)
)
−∗ ∃v. ` 7→i v ∗ .

(
` 7→i v −∗ ∆ |=>\N K[v]- e2 : τ

)
∆ |= K[!`]- e2 : τ

rel-load-r

` 7→s v ` 7→s v −∗ ∆ |=E e1 - K[v] : τ

∆ |=E e1 - K[!`] : τ

rel-store-r

` 7→s − ` 7→s v −∗ ∆ |=E e1 - K[()] : τ

∆ |=E e1 - K[`← v] : τ

rel-cas-l-inv

P
N

.P ∗ closeInvN (P) −∗

∃v. ` 7→i v ∗ .

(
v = v1 ∗ ` 7→i v2 −∗ ∆ |=>\N K[true]- e2 : τ

)
∧(

v , v1 ∗ ` 7→i v −∗ ∆ |=>\N K[false]- e2 : τ
)

∆ |= K[CAS(`,v1,v2)]- e2 : τ

Figure 4.4: Selected rules of ReLoC.

87

4. ReLoC: a logic for proving contextual refinements

Invariants rules:

rel-inv-alloc

.P P
N −∗ ∆ |= e1 - e2 : τ

∆ |= e1 - e2 : τ

rel-inv-restore

closeInvN (P) .P ∆ |=E e1 - e2 : τ

∆ |=E\N e1 - e2 : τ

Figure 4.4: Selected rules of ReLoC (cont.)

relation is {(true,1), (false,0)}. Note that our relation does not include any integers
other than 0 or 1, because as we previously explained, a well-typed client of bitnat
cannot construct other integers. With the relation at hand, the informal proof is
as follows. The initial values offered by the modules are related. The flip function
preserves this relation. The function that converts “bits” to Booleans sends related
values to the same Boolean.

We will now demonstrate how to carry out this argument formally in ReLoC.
Specifically, we prove the following refinement using the rules in Figure 4.4:

bitbool- bitnat : TBit

The other direction can be proved in a similar way, which using soundness (Theo-
rem 4.1), gives us the contextual equivalence bitbool 'ctx bitnat : TBit.

From a high-level point of view, the proof of this example involves applying
ReLoC’s type-directed structural rules following the structure of TBit. At the leaves of
the proof, we continue with ReLoC’s symbolic execution rules to perform computation
steps.

Since TBit is an existential type, and both bitbool and bitnat are pack’s, we start
off by applying the type-directed structural rule rel-pack. For that we need to pick a
relation R, which will be the interpretation for the type variable α, and should link
together the underlying representations of bits in bitbool and bitnat. We define the
relation R as follows:

R(b,n), (b = true∧n = 1)∨ (b = false∧n = 0).

Starting with the initial goal bitbool - bitnat : TBit, we apply rel-pack. As a
side-condition, we have to prove that R is persistent for any v1,v2, written as
persistent(R(v1,v2)), intuitively meaning that the proposition R(v1,v2) does not
assert ownership of any resources. We discuss persistent propositions in more detail
in Sections 4.3.4.2 and 4.4.2, and for now we just note that the relation R is indeed
persistent. After application of the rel-pack rule the goal becomes:

[α := R] |= (true, (λb.¬b), (λb. b))- (1,flipnat, (λn. n = 1)) : α × (α→ α)× (α→ bool).

By repeatedly applying the type-directed structural rule rel-pair we get three new
goals:

1. [α := R] |= true- 1 : α;

88

4.3. A tour of ReLoC

2. [α := R] |= (λb.¬b)- flipnat : α→ α;

3. [α := R] |= (λb. b)- (λn. n = 1) : α→ bool.
For the first goal, we can use the rules rel-return and val-var, leaving us with the
obligation R(true,1), which holds by the definition of R.

For the second and the third goal we need to prove refinements of two closures,
for which we use the type-directed structural rule rel-rec. Let us look at the third
goal in detail. After the application of rel-rec we have to show:

�
(
∀v1,v2. JαK[α:=R](v1,v2) −∗ [α := R] |= (λb. b) v1 - (λn. n = 1) v2 : bool

)
.

The goal is wrapped in Iris’s persistence modality �, which turns any proposition into
a persistent one. Once again, we postpone the details about the persistence modality
until Sections 4.3.4.2 and 4.4.2, and only remark that here we are allowed to prove
the goal without the � modality. Using this information, and the rule val-var we
reduce our goal to show:

R(v1,v2) −∗ [α := R] |= (λb. b) v1 - (λn. n = 1) v2 : bool,

for arbitrary v1,v2. We then unfold the definition of R and observe that we need to
distinguish two cases: 1. v1 = true and v2 = 1; 2. v1 = false and v2 = 0. Suppose we
are in the first case (the second case is similar). We have to show:

[α := R] |= (λb. b) true- (λn. n = 1) 1 : bool.

At this point we apply ReLoC’s symbolic execution rules: we symbolically reduce both
the left-hand and the right-hand side of the refinement. For this we use the rules
rel-pure-l and rel-pure-r (the later modalities (.) in these rules can be ignored for
now, they will be explained in Section 4.3.4.3). These rules perform pure reductions,
i.e., reductions that do not depend on the heaps. In our case we have a β-reduction
on the left-hand side, and a β-reduction and an evaluation of the binary operation
(equality testing) on the right-hand side:

(λb. b) true→pure true (λn. n = 1) 1→pure (1 = 1)→pure true.

After the repeated application of the said rules we arrive at a goal

[α := R] |= true- true : bool,

which we discharge by rel-return and val-bool. This completes the proof of the
refinement.

4.3.4 Example: Contextual refinement of a concurrent counter

The previous example showcased how ReLoC can be used to show contextual re-
finement and equivalence of pure program modules. In this subsection we prove
contextual refinement of the fine-grained concurrent counter in Figure 4.1 from

89

4. ReLoC: a logic for proving contextual refinements

newlock-r

∀lk. isLocks(lk, false) −∗ ∆ |=E e1 - K[lk] : τ

∆ |=E e1 - K[newlock ()] : τ

acquire-r

isLocks(lk, false) isLocks(lk,true) −∗ ∆ |=E e1 - K[()] : τ

∆ |=E e1 - K[acquire lk] : τ

release-r

isLocks(lk,b) isLocks(lk, false) −∗ ∆ |=E e1 - K[()] : τ

∆ |=E e1 - K[release lk] : τ

Figure 4.5: Right-hand side relational specification for locks.

Section 4.1 by showing that it refines the coarse-grained counter. Specifically, we
prove the following refinement:

counteri -ctx counters : (unit→ int)× (unit→ int).

Using soundness (Theorem 4.1), this contextual refinement can be reduced to proving
the refinement judgment counteri - counters : (unit→ int)× (unit→ int) in ReLoC.

The previous example demonstrated the basic usage of symbolic execution rules
of ReLoC. Those symbolic execution rules were confined to the pure fragment of
the programming language. In this example we show how to use ReLoC’s symbolic
execution rules for stateful computations and concurrency primitives. In addition to
the type-directed structural rules and symbolic execution rules, the proof will require
the usage of invariants for linking together the values of the two counters. We will
use selected ReLoC rules from Figure 4.4. To symbolically execute the operations on
locks that appear in counters, we will also make use of the relational specification for
locks in Figure 4.5. The lock specification is stated in terms of an abstract predicate
isLocks(lk, false) (resp., isLocks(lk,true)) stating that lk is a lock which is unlocked
(resp., locked). The relational specification for locks can then be seen as consisting
of symbolic execution rules that manipulate that abstract predicate.2 We will see in
Section 4.5.1.1 that these specifications can be proven for a simple spin lock.

4.3.4.1 Symbolic execution

Recall that performing symbolic execution means reducing the left-hand or right-
hand side of the refinement according to the computational rules. We have already
seen the usage of rel-pure-l, which allows us to perform pure computations. For this
example we also use stateful symbolic execution rules in Figure 4.4. To start with the

2Because this specification is for the “angelic” right-hand side, it does not express mutual exclusion as
it is common for separation logic specifications. We explain this by contrasting the specification with the
one for the left-hand side in Section 4.5.1.2.

90

4.3. A tour of ReLoC

refinement proof, we apply the stateful symbolic execution rule rel-alloc-l’ to the
left-hand side to obtain:

ci 7→i 0 −∗ ((λ(). read ci), (λ(). inci ci))- counters : (unit→ int)× (unit→ int).

Note that after the application of the rule we gain access to the resource ci 7→i 0
representing the value of the counter on the left-hand side. Subsequently, using the
symbolic execution rules rel-pure-r, rel-alloc-r and newlock-r on the right-hand side
the goal becomes:

ci 7→i 0 ∗ cs 7→s 0 ∗ isLocks(lk, false) −∗
((λ(). read ci), (λ(). inci ci))- (λ(). read cs), (λ(). incs cs lk)) : (unit→ int)×(unit→ int).

In addition to gaining the resource cs 7→s 0, representing the value of the right-hand
side counter, we get access to the abstract predicate isLocks(lk, false), which keeps
track of the state of the lock lk on the right-hand side.

ReLoC’s symbolic execution rules are inspired by the “backwards”-style Hoare
rules of [IO01] and the weakest-precondition rules in Iris [Kre+17; Jun+18b].

4.3.4.2 Invariants and persistent propositions

At this point we wish to prove a refinement of two closures. By the rule rel-pair

it would suffice to prove that both closures refine each other. However, if we were
to apply rel-pair, we would be forced to split our resources in two: the resources
needed for the refinement proof of the read function, and the resources needed for
the refinement proof of the increment function. But both of those operations require
access to the counter locations ci 7→i − and cs 7→s −. To circumvent this issue we put
said resources in a global invariant P , which allows P to be shared between different
parts of the program (and between different threads). In our running example, we

establish the invariant Icnt
N

(using rel-inv-alloc), where:

Icnt , ∃n ∈ N. ci 7→i n ∗ cs 7→s n ∗ isLocks(lk, false).

The invariant Icnt
N

not only allows us to share access to ci and cs, but also ensures
that the values of the respective counters match up. For our invariant we pick any
fresh invariant nameN ∈ InvName (more on the invariant names below).

Invariants P are persistent: once established, they will remain valid for the rest of
the verification. This differentiates them from ephemeral propositions like ` 7→i v and
` 7→s v, which could be invalidated in the future by actions of the program or proof.

The notion of being persistent is expressed in ReLoC (and Iris) by means of the
persistence modality �. The purpose of �P is to say that P holds without asserting
any ephemeral propositions. The most important rules for the � modality are
�P = �P ∗�P and �P −∗ P , which allow to freely duplicate �P and finally get P out.
We say that P is persistent, written as persistent(P), if P `�P ; otherwise, we say that
P is ephemeral. To prove �P , one can only use persistent resources like P , and not
ephemeral resources like ` 7→i v. We refer to stripping off the persistence modality

91

4. ReLoC: a logic for proving contextual refinements

in the context of persistent hypotheses as introducing the � modality. We make that
precise and give rules for the � modality in Section 4.4.3.

Once the invariant Icnt for our running example has been established, we can
duplicate it, and apply rel-pair to obtain two goals:

Icnt −∗ (λ(). read ci)- (λ(). read cs) : unit→ int

Icnt −∗ (λ(). inci ci)- (λ(). incs cs lk) : unit→ int.

We first describe how to prove the refinement of read. As λx. e is syntactic sugar for
rec _ x = e, we can apply rel-rec at the function type unit→ int and obtain the new
goal:

Icnt −∗�
(
∀v v′ . JunitK∆(v,v′) −∗ (λ(). !ci) v - (λ(). !cs) v

′ : int
)
.

By val-unit, we obtain that JunitK∆(v,v′) implies v = v′ = (). Moreover, since Icnt is
our only hypothesis, and it is persistent, we can strip off the � modality, arriving at
the following goal:

Icnt −∗ (λ(). !ci) ()- (λ(). !cs) () : int.

Accessing invariants. The fact that invariants are persistent (and thus can be du-
plicated, i.e., P = P ∗ P) comes with a cost—once a proposition P has been turned
into an invariant P , one is only allowed to access P during a single atomic execution
step on the left-hand side. This restriction is crucial as the scheduling of threads
on the left-hand side is demonic. When proving a refinement, we have to consider
all possible interleavings of threads. If we were to be able to access an invariant for
the duration of multiple steps, another thread could be scheduled in between, and
observe that the invariant was temporarily broken.

Scheduling on the right-hand side, however, is angelic. That is, when proving a
refinement, we have the ability to select the choice of scheduling. As a consequence,
ReLoC allows us to execute multiple steps on the right-hand side while accessing an
invariant.

Let us take a look at the way accessing invariants in ReLoC works. We do so by
continuing the proof of our running example (after introducing � and performing
pure symbolic execution steps):

Icnt −∗ !ci - !cs : int.

At this point we would like to access the locations ci and cs stored in the invariant
Icnt . For this we use the rule rel-load-l-inv in Figure 4.4.

This rule is quite a mouthful, so let us first take a look at its shape before going
into detail about the mask annotations and later modalities .. The essence of rel-load-
l-inv is that it provides temporary access to the resources P guarded by the invariant.
In addition, it provides the invariant closing resource closeInvN (P), which can restore
the invariant (using the rule rel-inv-restore). The resources P can be used to prove
` 7→i v, which is needed to justify the symbolic execution step on the left. Afterwards,
we are left with the goal ∆ |=>\N K[v] - e2 : τ . We typically do not immediately
restore the invariant (using rel-inv-restore), but first use the resources P to perform
matching symbolic execution steps on the right.

92

4.3. A tour of ReLoC

In our example, by applying rel-load-l-inv, we obtain ci 7→i n and cs 7→s n and
isLocks(lk, false), for some n ∈ N, reducing our goal to |=>\N n - !cs : int. We then
use rel-load-r to reduce our goal to |=>\N n - n : int. Because these steps did not
change the heap, rel-inv-restore’s premises for closing the invariant are trivially met.
The refinement proof is then concluded by applying the structural rules rel-return

and val-int.
Let us take a look at the rules rel-load-l-inv and rel-inv-restore in more detail.

A crucial aspect of these rules is that they ensure that access to the invariant P
N

is temporary, i.e., that P is only used during a single symbolic execution step on the
left-hand side (but possibly several steps on the right), and that the same invariant

cannot be opened twice. This is achieved by tagging each invariant P
N

with a name
N ∈ InvName, and by keeping track of which invariants have been accessed. The latter
is done in a way similar to Iris—like Iris’s Hoare triples {P } e {Q}E , our refinement
judgments ∆ |=E e1 - e2 : τ are annotated with a mask E ⊆ InvName of accessible
invariants. By default all invariants are accessible, so we write ∆ |= e1 - e2 : τ for
∆ |=> e1 - e2 : τ , where > is the set of all invariant names.

An invariant namespace is a (non-empty) list of strings or values: InvName =
List(String + Val). When opening an invariant and removing it from a mask, we
coerce an invariant namespace N into a mask by taking its upwards extension
N ↑ = {N .x1.xn | n ∈ N, xi ∈ String +Val}. Abusing the notation, we write E \N for
E \N ↑.

When accessing an invariant, e.g., using rel-load-l-inv or rel-cas-l-inv, its names-
pace is removed from the mask annotation of the judgment. The removal of the
namespace from the mask guarantees that invariants are only used for a single exe-
cution step on the left-hand side. After all, all rules for symbolic execution on the
left-hand side require a >mask, whereas those for the right-hand side allow for an
arbitrary mask. The only way of performing a subsequent step on the left-hand side
is thus by first restoring the mask to >, which can only be done by restoring the
invariants that have been accessed (using the rule rel-inv-restore).

One may wonder why refinement judgments are annotated with a mask instead
of a Boolean that indicates if an invariant has been opened. As we will show in
Section 4.4, ReLoC allows one to access multiple invariants simultaneously. To avoid
reentrancy—which means accessing the same invariant twice in a nested fashion—we
need to know exactly which invariants are opened.

An additional aspect to note is that invariants P
N

in ReLoC (and Iris) are im-
predicative [SB14; Jun+18b]. This means that P is allowed to contain other invariant

assertions Q
N ′

or even refinement judgments e - t : τ . As a consequence, to en-
sure soundness of the logic, all rules for invariants only provide access to .P , i.e.,
P “guarded” by the later modality .. When invariants are not used impredicatively
(i.e., invariants over so called timeless propositions, which include connectives of
first-order logic and heap assertions), these modalities can be soundly omitted.

93

4. ReLoC: a logic for proving contextual refinements

4.3.4.3 Later modality and Löb induction

The later modality . is not only used for resolving the impredicativity issues, but also
for handling general recursion. As is custom in logics based on step-indexing [AM01],
such as Iris, the later modality . and Löb induction are used to reason about recursive
functions. Specifically, Iris provides the following rules for .:

.-intro
P

.P

.-mono
P `Q
.P ` .Q

Löb

.P ` P
` P

In our example, this means that by Löb induction (rule Löb), we may prove
inci ci - incs cs lk : int, under the assumption of the induction hypothesis .(inci ci -
incs cs lk : int). The induction hypothesis is ‘guarded’ by a ., and can only be used
after we have performed a step of symbolic execution on the left-hand side. That is
why the symbolic execution rules for the left-hand side contain the later modality in
the premises. Let us see how it works in the example. We use rel-pure-l to arrive at:

.(inci ci - incs cs lk : int) −∗

.(let c = !ci in if CAS(ci , c,1 + c) then c else inci ci - incs cs lk : int).

By monotonicity (rule .-mono), we can now remove . both from the induction hypoth-
esis and from the goal. Subsequently, we symbolically execute the load operation
using the invariant, just like in the previous section, reaching the goal

if CAS(ci ,n,1 +n) then n else inci ci - incs cs lk : int

for some n ∈ N. To symbolically execute the compare-and-set (CAS), we use rel-cas-

l-inv. By this rule, we have to consider two outcomes, depending on whether the
original value of the counter has changed between the load and compare-and-set
operations or not.

1. Suppose that the value of the counter ci has changed. In that case the compare-
and-set operation fails and we are left with

ci 7→i m ∗ cs 7→s m ∗ isLocks(lk, false) −∗
|=>\N if false then n else inci ci - incs cs lk : int

for some m , n. Because the symbolic heap has not been changed, we can
easily restore the invariant and execute the if false then . . . else . . . to obtain
inci ci - incs cs lk : int, which is exactly our induction hypothesis.

2. If the value has not changed, then the compare-and-set succeeds and we are
left with the new goal:

ci 7→i (1 +n) ∗ cs 7→s n ∗ isLocks(lk, false) −∗
|=>\N if true then n else inci ci - incs cs lk : int.

94

4.4. A closer look at ReLoC

At this point we use the symbolic execution rules rel-store-r, rel-load-r and
the lock specifications from Figure 4.5 to symbolically execute the right-hand
side of the refinement and update the resources to match:

ci 7→i (1 +n) ∗ cs 7→s (1 +n) ∗ isLocks(lk, false) −∗
|=>\N if true then n else inci ci - n : int.

We can then restore the invariant and symbolically execute the left-hand side
to finish the proof.

Note that the point in the proof when we symbolically execute incs cs lk on the
right-hand side corresponds to the linearization point of inci .

This concludes the proof of the counter refinement. For the purposes of the proof,
we have used some derived rules and principles in ReLoC. In the next section we will
present an overview of primitive rules—the very core of ReLoC—and show how they
can be used to recover the kind of intuitive reasoning we employed in this section.

4.4 A closer look at ReLoC

We now explain some of the more technical details of ReLoC, and show how the
principles that we have used in Section 4.3 can be obtained from ReLoC’s primitive
proof rules. First, we describe how to work with invariants using Iris’s update modal-
ity |V (Section 4.4.1). Then we explain the role and rules of persistent propositions
(Section 4.4.2), and go through a selection of ReLoC’s primitive proof rules and
explain how the symbolic execution and structural rules can be derived from them
(Section 4.4.3). Finally, we demonstrate how ReLoC’s rules can be used to prove
the fundamental property: if we can derive a typing judgment ` e : τ , then e refines
itself, i.e., e - e : τ . To prove the fundamental property, we need to generalize the
relational judgment to open terms, and prove the structural rules for open terms as
well (Section 4.4.4).

A selection of ReLoC’s primitive proof rules are shown in Figure 4.6.

4.4.1 Invariants and the update modality

The rules for invariants in Figure 4.4 in Section 4.3.4.2 are fairly restrictive, e.g.,
they allow us to open at most one invariant at the same time. Moreover, several of
those rules, e.g., rel-load-l-inv and rel-cas-l-inv, mix together symbolic execution and
invariant manipulation. We now present ReLoC’s more primitive proof rules, which
integrate Iris’s flexible mechanism for invariants and ghost state, and which can be
used to derive rules such as like rel-load-l-inv and rel-cas-l-inv.

Invariants and ghost state in Iris are controlled via the update modality |VE1 E2 P .
The intuition behind |VE1 E2 P is to express that under the assumption that the invari-
ants in E1 are accessible initially, one can obtain P , and end up in the situation where
the invariants in E2 are accessible. Thus, for showing P we can open the invariants
from E1 and have to restore the invariants from E2 (the invariants from E1 \ E2 may
remain open). Furthermore, this modality allows one to perform changes to Iris’s

95

4. ReLoC: a logic for proving contextual refinements

Value interpretation rules:

val-var

∆(α)(v1,v2)

JαK∆(v1,v2)

val-unit

v1 = v2 = ()

JunitK∆(v1,v2)

val-bool

∃b ∈ B. v1 = v2 = b

JboolK∆(v1,v2)

val-int

∃n ∈ Z. v1 = v2 = n

JintK∆(v1,v2)

val-prod

∃v1,v2,w1,w2. (v = (v1,v2)) ∗ (w = (w1,w2)) ∗ JτK∆(v1,w1) ∗ JσK∆(v2,w2)

Jτ × σK∆(v,w)

val-arr

�(∀w1w2. JτK∆(w1,w2) −∗ ∆ |= v1 w1 - v2 w2 : σ)

Jτ→ σK∆(v1,v2)

Monadic rules:

rel-return

JτK∆(v1,v2)

∆ |= v1 - v2 : τ

rel-bind

∆ |= e1 - e2 : τ

∀v1 v2. JτK∆(v1,v2) −∗
∆ |= K1[v1]- K2[v2] : σ

∆ |= K1[e1]- K2[e2] : σ

Type-directed structural rules:

rel-fork

∆ |= e1 - e2 : unit

∆ |= fork {e1}- fork {e2} : unit

Symbolic execution rules:

rel-load-l

|V> E (∃v. ` 7→i v ∗ .
(
` 7→i v −∗ ∆ |=E K[v]- e2 : τ

))
∆ |= K[!`]- e2 : τ

rel-store-l

|V> E (` 7→i − ∗ .
(
` 7→i v −∗ ∆ |=E K[()]- e2 : τ

))
∆ |= K[`← v]- e2 : τ

rel-cas-l

|V> E

∃v′ . ` 7→i v
′ ∗ .

(
v′ , v1 −∗ .(` 7→i v

′ −∗ ∆ |=E K[false]- e2 : τ)
)
∧

.
(
v′ = v1 −∗ .(` 7→i v2 −∗ ∆ |=E K[true]- e2 : τ)

)
∆ |= K[CAS(`,v1,v2)]- e2 : τ

Figure 4.6: Selected primitive rules of ReLoC.

96

4.4. A closer look at ReLoC

Invariants rules (inv-alloc and inv-access are inherited from Iris):

rel-upd

|VE1 E2∆ |=E2
e1 - e2 : τ

∆ |=E1
e2 - e2 : τ

inv-alloc

.P

|VE P
N

inv-access

N ↑ ⊆ E P
N

|VE E\N .P ∗ (.P E\N E True)

Figure 4.6: Selected primitive rules of ReLoC (cont.)

ghost state via frame preserving updates; for a description of those we refer the reader
to [Jun+18b].

The key rules of the update modality are:

|V-intro

P

|VE E P

|V-mono

P `Q
|VE1 E2 P ` |VE1 E2Q

|V-idemp

|VE1 E2 |VE2 E3 P

|VE1 E3 P

|V-sep

P ∗ |VE1 E2Q

|VE1 E2 (P ∗Q)

These rules say that the update modality is a monad, which is indexed (due to the
masks), and strong (due to rule |V-sep). In ReLoC (and Iris) proofs, we often need to
eliminate update modalities in the proof context, which is allowed if the goal is an
update modality with corresponding source mask. This is expressed by the following
derived rule:

|V-elim

|VE1 E2 P P −∗ |VE2 E3Q

|VE1 E3Q

This rule is derivable from |V-mono, and |V-idemp.
Before we will describe the rules of the update modality related to invariants, let

us describe some syntactic sugar that we inherit from Iris. We write |VE P for |VE E P ,
and |VP for |V>P , where > is the set of all invariant names. Moreover, since the
update modality is often combined with the magic wand, we write P E1 E2 Q for
P −∗ |VE1 E2Q, and follow the same conventions for omitting masks on as used for
|V.

ReLoC’s main rule for interacting with the update modality is rel-upd. It allows
to eliminate an update modality around a refinement judgment. To get an idea of
how this rule is used, let us take a look at the primitive rule inv-alloc for allocating
an invariant. The derived rule rel-inv-alloc in Figure 4.4 is a composition of rel-upd
with Iris’s rules |V-elim and inv-alloc.

By combining rel-upd with Iris’s rules |V-elim and inv-access for accessing in-

variants, one can turn an invariant P
N

into its content P , together with a way of

restoring the invariant .P E\N E True. It is important to notice that by using the
combination of these rules, the mask on the refinement judgment changes from E
into E \N . This prohibits access to the invariantN until it has been restored—thus
preventing reentrancy. Restoring the invariant is done by using the rule rel-upd with

97

4. ReLoC: a logic for proving contextual refinements

the premise .P E\N E True. This requires one to give up P , and in turn transforms
the mask of the judgment back into E. Note that one can use inv-access multiple times
to open multiple invariants.

Invariants and symbolic execution. Opening invariants through rel-upd and inv-

access as described above is fairly limited. Once we open an invariant, the mask at
the refinement judgment changes from > into >\N , which prevents any symbolic
execution on the left-hand side. The rules for symbolic execution on that side require
the mask to be >. As we discussed in Section 4.3.4.2 already, this restriction to the >
mask on left-hand side rules is crucial. It is unsound to perform multiple symbolic
execution steps on the left while an invariant is open. To see why this is the case,
consider the following refinement:

(λx. let n = !x in x← n+ 1;n)- inci : ref int→ int

This refinement does not hold because the two programs can be distinguished by the
context:

let c = ref(0) in let f = [•] in fork {f c} ;f c.

The left-hand side is basically the coarse-grained increment operation incs without
the lock protection. Thus, the function on the left-hand side does not guarantee
thread-safety: the value of the passed reference can change unpredictably if the
function is invoked in parallel with itself. By contrast, the inci always increments the
counter monotonically.

If we were allowed to perform multiple symbolic execution rules on the left-
hand side, then we could have proven the above refinement, using an invariant of
∃n. cs 7→s n ∗ ci 7→i n .

In order to support symbolic execution with invariants, ReLoC provides additional
rules to simultaneously access an invariant and perform a single atomic symbolic
execution step on the left-hand side. Examples of such rules are rel-load-l, rel-store-l
and rel-cas-l.

We can now explain the derived rule rel-load-l-inv in terms of the primitive
rules. The proposition .P E\N E True is used for closing the invariantN because
it changes the mask from E \N to E. Thus closeInvN (P) , (.P >\N > True). To
prove rel-load-l-inv from Figure 4.4, we apply rel-load-l to obtain the goal:

|V> >\N (
∃v. ` 7→i v ∗ .

(
` 7→i v −∗ ∆ |=>\N K[v]- e : τ

))
.

We then use inv-access and |V-elim to get the premise of rel-load-l-inv. In the same way
rel-cas-l-inv can be derived from rel-cas-l. Finally, the closing rule rel-inv-restore is
a consequence of the definition of closeInvN (P) and rel-upd.

Using ReLoC’s primitive symbolic execution rules such as rel-load-l, rel-store-l
and rel-cas-l one can also derive the following weaker, but perhaps more intuitive,
symbolic execution rule:

rel-store-l’

` 7→i v .
(
` 7→i w −∗ ∆ |= K[()]- e2 : τ

)
∆ |= K[`← w]- e2 : τ

98

4.4. A closer look at ReLoC

Since these rules have a >mask, they can only be used when no invariants have
been opened. Recall that by contrast, the symbolic execution rules for the right-hand
side, such as rel-load-r, rel-store-r in Figure 4.4, which are of a similar shape, can be
performed even with invariants open because they allow the mask to be arbitrary.

4.4.2 The persistence modality

Recall from Section 4.3.4.2 that a proposition P is persistent, written as persistent(P),
if P `�P , where � is Iris’s persistence modality. The � modality plays an important
role in ReLoC because it makes it possible to express that if two expressions are
related, they remain related forever. For example, the persistence modality plays a
crucial role in the rule rel-rec in Figure 4.4—it ensures that ephemeral resources
(such as heap assertions) are not used for the verification of the closure’s body. After
all, closures can be invoked arbitrarily many times at different points in time (possibly
concurrently), and hence it is impossible to guarantee that ephemeral resources will
still be available when the closure is called. For example, without the � modality in
the premise of rel-rec one would be able to prove the following unsound refinement:

let ` = ref(0) in λ(). `← 1 + !`; !` - λ(). 1 : unit→ int.

One would use rel-alloc-l’ to obtain the heap assertion ` 7→i 0, and subsequently use
that assertion to verify the body of the closure. Fortunately, the � modality in rel-rec

prevails—` 7→i 0 is ephemeral, not persistent, so cannot be moved under a �.
In Section 4.3.4.2 we gave an idea of the core rules of the persistence modality.

Let us now take a look at the rules in more detail:
�-dup

�P ∗�P
�P

�-elim

�P
P

�-mono

P `Q
�P `�Q

�-idemp

�P
��P

�-sep

�P ∗�Q
�(P ∗Q)

The rules �-dup and �-elim say that the �P is duplicable, and one can get P out. The
rule �-idemp says that �P itself is persistent. The rules �-elim, �-mono and �-idemp

say that � is in fact a co-monad. Finally, � commutes with most logical connectives,
for example, the separating conjunction, as expressed by �-sep.

If we wish to prove �Q under the assumptions P1, . . . , Pn, where each Pi is persis-
tent, then we can introduce the � modality and prove Q from P1, . . . , Pn:

�-intro

persistent(P1) . . . persistent(Pn) P1 ∗ · · · ∗ Pn `Q
P1 ∗ · · · ∗ Pn `�Q

This rule is derivable from the definition of persistent(−), �-sep, and �-mono.
Note that persistent(P) is defined through the validity relation P ` �P ; i.e., it

is a meta-logical notion (in terms of the mechanization, persistent(P) is a Coq-
level predicate, not an Iris-level predicate). As such, the rule above does not fit
the description we have given to the inference rules in Section 4.3.1. Rather, it
should be seen as a family of inference rules indexed by meta-level propositions
persistent(P1), . . . ,persistent(Pn).

99

4. ReLoC: a logic for proving contextual refinements

4.4.3 Value interpretation and monadic rules

In addition to the refinement judgment ∆ |= e1 - e2 : τ , which relates expressions e1
and e2, ReLoC provides the value interpretation JτK∆(v1,v2), which relates values
v1 and v2. The rule rel-return expresses that JτK∆(v1,v2) implies ∆ |= v2 - v2 : τ .
However, the inverse direction does not hold, JτK∆(v1,v2) is strictly stronger than
∆ |= v1 - v2 : τ as its rules (in Figure 4.6) are bidirectional, whereas those for the
expression judgment are unidirectional. The bidirectionality is crucial for the rule
rel-rec in Figure 4.4, as it contains JτK∆(v1,v2) in negative position—i.e., as a client
of rel-rec one gets JτK∆(v1,v2) as an assumption and hence needs to eliminate it.

We want the value interpretation JτK∆(v1,v2) to be persistent, because our type
system is not substructural, i.e., types denote knowledge, but not ownership of data.
For example, in typing the expression e1 ← e2 with store-typed, we use the same
context Γ for type checking both e1 and e2. In order to semantically validate such
rules, we want the propositions JτK∆(v1,v2) to be duplicable. To that end, we require
all the interpretations in the context ∆ to be persistent. That is why the rule rel-pack

in Figure 4.4 has a side-condition ∀v1,v2. persistent(R(v1,v2)).
The value interpretation also appears in the monadic rules rel-return and rel-bind

in Figure 4.6. These rules are used to derive all type-directed structural rules of
ReLoC, with the exception of rel-fork, which is the sole primitive type-directed
structural rule. As an example, consider the type-directed structural rule for the first
projection π1.

Lemma 4.2. The following rule is derivable:

∆ |= e1 - e2 : τ × σ
∆ |= π1(e1)- π1(e2) : τ

Proof. By rel-bind it suffices to show:
• ∆ |= e1 - e2 : τ × σ , but this is exactly our assumption;

• for any v,w: Jτ × σK∆(v,w) −∗ ∆ |= π1(v)- π1(w) : τ .
By val-prod we have values vi ,wi for i ∈ {1,2} such that v = (v1,v2) and w = (w1,w2)

and JτK∆(v1,w1)∗JσK∆(v2,w2). Using rel-pure-l and rel-pure-r we reduce the goal ∆ |=
π1(v1,v2)- π1(w1,w2) : τ to ∆ |= v1 - w1 : τ . At this point we apply rel-return.

4.4.4 Fundamental theorem and refinements of open terms

The type-directed structural rules3 are also used for proving the following theorem,
which is a standard result for logical relation models of type systems:

Theorem 4.3 (Fundamental theorem for closed terms). If expression e is well typed,
i.e., ` e : τ , then e refines itself, i.e., the judgment e - e : τ is derivable in ReLoC.

We wish to prove this theorem by induction on the typing derivation. But in
order to make it work, we need to generalize the theorem to open terms (e.g., in

3Our type-directed structural rules are often called compatibility lemmas in the logical relation literature.

100

4.5. Relational specifications in ReLoC

order to deal with the rec-typed case). Consequently, we need to generalize ReLoC’s
refinement judgment ∆ | Γ |= e1 - e2 : τ to open terms e1 and e2 whose free variables
are bound by the typing context Γ . To define the refinement judgment for open terms,
we first define a standard notion of a closing substitution.

Definition 4.4. A mapping γ :Var→Val×Val is a closing substitution w.r.t. the typing
environment Γ , notation JΓ K∗

∆
(γ), if

∀(x,τ) ∈ Γ . JτK∆(γ1(x),γ2(x)),

where γi(x) = πi(γ(x)) is the i-th projection of γ(x).

Definition 4.5. The refinement judgment ∆ | Γ |= e1 - e2 : τ for open terms is defined
as:

∆ | Γ |= e1 - e2 : τ , ∀γ. JΓ K∗∆(γ) −∗ ∆ |= γ1(e1)- γ2(e2) : τ.

Using the refinement judgment for open terms we can now state versions of the
type-directed structural rules for open terms. For example:

∆ | x :τ,Γ |= e1 - e2 : σ

∆ | Γ |= λx. e1 - λx. e2 : τ→ σ

This rule can be proven by unfolding the definition of the refinement judgment for
open terms and proceeding as in Lemma 4.2. Finally, we can state and prove the
generalized version of the fundamental theorem for open terms:

Theorem 4.6 (Fundamental theorem for open terms). If Ξ | Γ ` e : τ , then ∆ | Γ |= e -
e : τ is derivable in ReLoC, for all ∆ which contain the variables from Ξ.

Proof. By induction on the typing derivation, using the versions of the type-directed
structural rules for open terms.

With the refinement judgments generalized to open terms, we can state and the
generalized version of Theorem 4.1 for open terms, which we prove in Section 4.7.5.

Theorem 4.7 (Soundness for open terms). Let Ξ be a type environment. Suppose
that refinement judgment ∆ | Γ |= e1 - e2 : τ is derivable in ReLoC for all ∆ which
contain the variables from Ξ. Then Ξ | Γ ` e1 -ctx e2 : τ .

4.5 Relational specifications in ReLoC

Due to its first-class refinement judgments, ReLoC can be used to give relational speci-
fications to programs. Similar to Hoare triples, relational specifications abstract away
from a program’s implementation by expressing its behavior in terms of a pre- and
postcondition. Relational specifications apply to the situation when the expression
on the one side of the refinement contains a program subject to specification, while
the expression on the other side is arbitrary. In Figure 4.5 in Section 4.3 we saw an
example of a right-hand side relational specifications for locks, which we then used
to verify a counter module.

101

4. ReLoC: a logic for proving contextual refinements

We start this section by describing the general format of non-atomic relational
specifications (Section 4.5.1). Non-atomic relational specifications are sufficient to
give strong specifications for the right-hand left, but due to the demonic nature
of the left-hand side, we often need stronger specifications for the left-hand side
(Section 4.5.2). We therefore introduce logically atomic relation specifications, which
generalize da Rocha Pinto et al.’s TaDA-style specifications [RDG14] (Section 4.5.3)
and Svendsen et al.’s HOCAP-style specifications [SBP13] (Section 4.5.4) from the
Hoare-logic setting to the relational setting. Finally, we show how to use logically
atomic specifications to verify a ticket lock (Section 4.5.5).

4.5.1 Non-atomic relational specifications

4.5.1.1 Right-hand side relational specifications

Consider the following implementation of a lock, which we refer to as a spin lock:

newlock, λ(). ref(false)

acquire, λ`. if CAS(`, false,true) then () else acquire `

release, λ`. `← false

For this specific implementation, we can prove the rules in Figure 4.5 in Section 4.3.4
by defining the lock predicates as follows:

isLocks(lk,b), lk ∈ Loc ∗ lk 7→s b.

The rules for locks in Figure 4.5 follow a certain pattern. For an expression e2 that,
under precondition P , reduces to v, with postcondition Q(x,v), we have the following
rule:

P ∀x,v. Q(x,v) −∗ ∆ |=E e1 - K[v] : τ

∆ |=E e1 - K[e2] : τ

The postcondition Q : X ×Val→ iProp also depends on a type X, provided by the
provider of the rule. This rule pattern can be considered a relational version of a
Hoare triple for a program on the right-hand side of the refinement judgment.

4.5.1.2 Left-hand side relational specifications

We can formulate a similar pattern for programs on the left-hand side of the refine-
ment judgment:

P ∀x,v. Q(x,v) −∗ ∆ |= K[v]- e2 : τ

∆ |= K[e1]- e2 : τ

Using this pattern we can state and prove a relational version of the standard sepa-
ration logic specification for locks, which is shown in Figure 4.7. This specification
makes use of the lock predicate isLocki(γ, lk,R), which states that lk protects the
resources described by the proposition R. When creating a lock using newlock, the
resources R have to be given up, and the persistent lock predicate isLocki(γ, lk,R) is

102

4.5. Relational specifications in ReLoC

newlock-l

R ∀lk, γ. isLocki(γ, lk,R) −∗ K[lk]- e2 : τ

K[newlock ()]- e2 : τ

is-lock-pers

isLocki(γ, lk,R)

� isLocki(γ, lk,R)

acquire-l

isLocki(γ, lk,R) (locked(γ) −∗ R −∗ K[()]- e2 : τ)

K[acquire lk]- e2 : τ

release-l

isLocki(γ, lk,R) locked(γ) R K[()]- e2 : τ

K[release lk]- e2 : τ

Figure 4.7: Left-hand side relational specification for locks.

given in return. A thread that acquires a lock by calling acquire gets access to R for
the duration of the critical section, and has to give R back when calling release. The
token locked(γ), where γ is a ghost name associated to the lock, makes sure that a
lock can only be released when it has been acquired. To prove the left-hand side
specification for the spin lock, we define the lock predicate isLocki(γ, lk,R) following
the usual definition in Iris:

isLocki(γ, lk,R), lk ∈ Loc ∗ (lk 7→i false ∗ locked(γ) ∗R)∨ (lk 7→i true)
Nlock

This definition uses an Iris invariant to express that the lock is either unlocked
(lk 7→i false), in which case it holds the token locked(γ) and the resources R, or
locked (lk 7→i true), in which case it holds no resources, since those are held by the
thread that acquired the lock. The token locked(γ) is an exclusive resource that is
obtained from Iris’s ghost theory.

4.5.1.3 Left- versus right-hand side relational specifications

As we have seen in the specifications for the lock, there is an asymmetry between the
left- and right-hand side specifications. The left-hand side specification of acquire
(acquire-l) can be used regardless of whether the lock is unlocked, whereas the
right-hand specification (acquire-r) can be used solely if the lock is unlocked (i.e., if
isLocks(lk, false)). This is due to the demonic nature of the left-hand side and the
angelic nature of the right-hand side. For acquire on the left-hand side, we have to
consider an arbitrary execution, whereas for acquire on the right-hand side we have
to provide an execution ourselves. That is, for acquire on the right-hand side we have
to show that it actually acquires the lock and reduces to (), which is only possible
when the lock is unlocked. For this reason we use the predicate isLocks(lk,b), which
tracks the state b of the lock.

103

4. ReLoC: a logic for proving contextual refinements

4.5.2 The need for logically atomic specifications

Recall from Section 4.4.1 that for any primitive (stateful) operation we have a sym-
bolic execution rule that allows the client to access shared resourced stored in an
invariant. For example, the rule rel-store-l for the store operation is as follows:

|V> E (` 7→i − ∗ .
(
` 7→i v −∗ ∆ |=E K[()]- e2 : τ

))
∆ |= K[`← v]- e2 : τ

Concretely, the update modality |V> E in the premise of this rule allows users to use
inv-access to access an invariant for the duration of the operation. The mask E in the
refinement judgment ∆ |=E K[()] - e2 : τ (that appears in the premise of the rule)
forces the user to close the invariant at the end of the duration of the operation. The
ability to open an invariant is sound because operations such as store are physically
atomic—i.e., they reduce in one step. As a consequence of being physically atomic,
other threads cannot observe that the invariant has been broken during the execution
of the operation.

In contrast, methods of a concurrent program module are typically composed of
several operations and hence they are not physically atomic. For example, consider
the increment function inci of the fine-grained counter module from Figure 4.1:

inci , rec inc c = let n = !c in

if CAS(c,n,1 +n) then n else inc c

This function is a compound expression that does not reduce to a value in a single
step. Nevertheless, during the execution of this function there is a single instant at
which the whole operation actually appears to take the effect—namely the successful
reduction of the compare-and-set operation (CAS). This instant is called the lineariza-
tion point. What it means is that, for an outside observer, the method inci behaves as
if it was atomic, and we wish to express that in this function’s relational specification.

This phenomenon is called logical atomicity in the literature, and has been stud-
ied extensively in the context of Hoare-style logics [JP11; RDG14; SBP13; Jun+15;
Jun+20]. In the upcoming subsections we will how to generalize the concept of
logical atomicity to the relational setting, and how that gives rise to logically atomic
relational specifications. Concretely, we generalize da Rocha Pinto et al.’s TaDA-style
specifications [RDG14] (Section 4.5.3) and Svendsen et al.’s HOCAP-style specifica-
tions [SBP13] (Section 4.5.4) from the Hoare-logic setting to the relational setting.
Establishing the formal comparison between the two styles is out of the scope of this
paper. Rather, we demonstrate that both approaches can be applied to the context of
relational specifications.

104

4.5. Relational specifications in ReLoC

4.5.3 TaDA-style relational specifications

4.5.3.1 Formulating TaDA-style specifications

We take inspiration from the encoding of TaDA-style logically atomic Hoare triples in
Iris [Jun+15] and assign the following logically atomic relational specification to inci :

inc-i-l-tada

� |V> E ∃n. c 7→i n ∗

(
c 7→i n

E > True
)
∧(

c 7→i (n+ 1) −∗ |=E K[n]- e : τ
)

K[inci c]- e : τ

Contrary to the non-atomic specification, we do not have c 7→i n as a premise of
the rule directly, but instead the premise contains a way of obtaining c 7→i n. The
typical way of obtaining c 7→i n is by accessing an invariant, which is formally done
by using the update modality |V> E in the premise combined with inv-access from
Figure 4.6.

To justify the remaining part of the premise of the rule we need to take a closer
took at the behavior of inci c, whose implementation (Figure 4.1) we recall to be as
follows:

inci , rec inc c = let n = !c in

if CAS(c,n,1 +n) then n else inc c

The compare-and-set operation (CAS) can either succeed or fail. If it succeeds, then we
have managed to update our resources to c 7→i (n+1), and we can proceed with proving
|=E K[n]- e : τ under that premise. This explains the (c 7→i (n+ 1) −∗ |=E K[n]- e : τ)
clause. If, however, the compare-and-set fails, then we need to be able to restart
the whole computation of inci c. For that we must be able to return c 7→i n to
the invariant. Hence the (c 7→i n

E > True) clause. (The same clause is used for
performing operations that do not modify the state, such as dereferencing.)

Finally, we know that the computation can either succeed or be restarted—but not
both. We have to accommodate for both situations, just not at the same time. Hence
the last two clauses described here are connected by an intuitionistic conjunction (∧),
instead of the separating conjunction (∗).

4.5.3.2 Using TaDA-style specifications

We use the logically atomic relational specification inc-i-l-tada to prove the refinement
that we have seen in Section 4.3.4.2. The new proof is more modular since it does not
appeal to the definition of inci . The refinement that we want to prove is as follows:

Icnt
N −∗ inci ci - incs cs l : int

Recall that Icnt , ∃n ∈ N. ci 7→i n ∗ cs 7→s n ∗ isLocks(lk, false). To prove this goal, we
use inc-i-l-tada. After introducing the persistence modality (using �-intro, which is
allowed, because there are no ephemeral assumptions in our context), this gives the

105

4. ReLoC: a logic for proving contextual refinements

following new goal (under the assumption Icnt
N

):

|V> >\N ∃n. ci 7→i n ∗

(
ci 7→i n

>\N > True
)
∧(

ci 7→i (n+ 1) −∗ |=>\N n- incs cs l : int
)

At this point we can open up the invariant Icnt (using inv-access), and thereby intro-
duce the update modality. The contents of the invariant provides us with a witness
for the existential quantifier and allows us to discharge c 7→i n. We are left with
proving the conjunction:(

ci 7→i n
>\N > True

)
∧

(
ci 7→i (n+ 1) −∗ |=>\N n- incs cs l : int

)
under the assumption of the unused resources isLocks(l, false) and cs 7→s n from the
invariant, and the invariant closing resource .Icnt

>\N > True.
The first conjunct corresponds to the case in which we close the invariant without

modifying anything in our current context (i.e., the compare-and-set has failed). It
follows directly from the invariant closing resource. It thus remains to prove the
second conjunct (i.e., the compare-and-set has succeeded), which means we should
prove |=>\N n- incs cs l : int under the assumptions ci 7→i (n+1) and isLocks(l, false)

and cs 7→s n and .Icnt
>\N > True. At this point we finish the proof by symbolically

executing incs cs l on the right-hand side before closing the invariant using invariant
closing resource.

4.5.3.3 General format of TaDA-style specifications

The general format of logically atomic rules for logical refinements is the following:

R � |V> E ∃x. P (x) ∗

(
P (x) E > True

)
∧(

∀v. Q(x,v) ∗R −∗ |=E K[v]- e2 : τ
)

K[e1]- e2 : τ

Here, P : X→ iProp is a predicate describing consumed resources, and Q : X ×Val→
iProp is a predicate describing produced resources, both dependent on a type X
supplied by the provider of the rule (e.g., a library that exports the program e1).
This parameter X is selected on per-specification basis. For example, for the counter
module X is going to be the type of natural numbers.

We include a frame R, which can be chosen by the client, for the following reason.
The second premise of the rule resides below a persistence modality. Whenever we
prove a goal of the form �P we must prove P using only persistent resources, and
thus have to throw all the ephemeral resources away (see �-intro in Section 4.4.2).
However, we do not want to throw away all the ephemeral resources that we have
for eternity (as they might be needed to close invariants afterwards or to proceed
otherwise with the proof), so we give them up only temporarily, by collecting them
in R.

106

4.5. Relational specifications in ReLoC

4.5.3.4 Proving TaDA-style specifications

Following the general scheme, we now state and prove the TaDA-style specification
of our increment function:

inc-i-l-tada-gen

R |V> E �∃n. c 7→i n ∗

(
c 7→i n

E > True
)
∧(

c 7→i (n+ 1) ∗R −∗ |=E K[n]- e : τ
)

K[inci c]- e : τ

To prove this specification, we proceed by Löb induction and symbolic execution.
At the point when we need to symbolically dereference c we apply rel-load-l. We
then use the update that we have as a premise of the specification to obtain c 7→i n
for some n. After providing c 7→i n for the load operation, we use the first conjunct
c 7→i n∗ E > True to restore the mask on the refinement judgment.

After that we have to symbolically execute the compare-and-set operation; we
apply rel-cas-l and use the update that we have as a premise again to obtain c 7→i m
for some m, as needed for rel-cas-l. If m , n, then the compare-and-set operation
has failed, and we can restart the proof first by restoring the mask on the refinement
judgment (using the closing update), and then using the Löb induction hypothesis.
If m = n, then the compare-and-set operation has succeeded, and the points-to
connective is updated to c 7→i (n+ 1). Then we can use the second conjunct c 7→i (n+
1)∗R −∗ |=E K[n]- e : τ to arrive at the exact conclusion that we need: |=E K[n]- e : τ .

4.5.4 HOCAP-style relational specifications

We now present another form of logically atomic relational specifications—HOCAP-
style logical atomic relational specifications, which are based on the logically atomic
specifications by Svendsen et al. [SBP13] in the eponymous logic. Contrary to TaDA-
style specifications, which come in a precisely specified format (Section 4.5.3.3),
HOCAP-style specifications do not have a precise format. This provides the flexi-
bility that not only can they be used to represent linearization points, but they can
also be used to represent arbitrary observable interactions with the abstract state.
This flexibility allows us to give strong specifications to non-linearizable methods
(Section 4.5.4.4), which we use in the ticket lock refinement proof (Section 4.5.5).

4.5.4.1 Formulating HOCAP-style specifications

Let us consider the HOCAP-style specification in Figure 4.8 for the fine-grained
concurrent counter from Figure 4.1 in Section 4.1. Contrary to the TaDA-style
specification, the HOCAP-style specification does not expose the underlying state of
the counter (i.e., ` 7→i n) directly, but instead provides an abstract view of the state
through abstract predicates.

The persistent predicate cnt_ctxγ (c,N) asserts that the value c represents a
counter. The specification is parameterized by a namespace N for the internal
invariants associated with the specification. The ghost name γ is used to link c with
the predicates cntγ (q,n) and cnt_authγ (n), which describe the abstract state of the

107

4. ReLoC: a logic for proving contextual refinements

Rules for abstract predicates:

cnt-agree

cnt_authγ (n) cntγ (q,m)

n =m

cnt-agree’

cntγ (q1,n) cntγ (q2,m)

n =m

cnt-combine

cntγ (q1,n) ∗ cntγ (q2,n)

cntγ (q1 + q2,n)

cnt-update

cnt_authγ (n) cntγ (1,m)

|Vcnt_authγ (k) ∗ cntγ (1, k)

Cnt-persistent

cnt_ctxγ (c,N)

�cnt_ctxγ (c,N)

Relational specification:

new-i-l-hocap

∀cγ. cnt_ctxγ (c,N) ∗ cntγ (1,n) −∗ K[c]- e2 : τ

K[ref(n)]- e2 : τ

inc-i-l-hocap

E ∩N ↑ = ∅ cnt_ctxγ (c,N)
(∀n. cnt_authγ (n) >\N >\N \E cnt_authγ (n+ 1) ∗ |=>\E K[n]- e2 : τ)

K[inci c]- e2 : τ

read-i-l-hocap

E ∩N ↑ = ∅ cnt_ctxγ (c,N)
(∀n. cnt_authγ (n) >\N >\N \E cnt_authγ (n) ∗ |=>\E K[n]- e2 : τ)

K[read c]- e2 : τ

Figure 4.8: HOCAP-style logically atomic relational specification for a fine-grained
concurrent counter.

counter. The predicate cntγ (q,n) provides the client view of the abstract state of the
counter. It is similar to the fractional heap points-to connective from separation
logic—it associates a value (a natural number n) to the counter, and can be split
and combined according to the fractional component q (cnt-agree’, cnt-combine). The
predicate cnt_authγ (m) provides the module view of the abstract state of the counter.
It agrees with the client view (cnt-agree) and can be used together with cntγ (1,n) to
update the value associated to the counter (cnt-update).

Ownership of the module view predicate cnt_authγ (m) is given to the user only
during the execution of the counter operations. Consider, for example, the specifica-
tion inc-i-l-hocap for the atomic increment function inci . From the client’s point of
view, there is only one place where inci observably interacts with the abstract state of
the counter, namely during its linearization point. For this point of access, the user

108

4.5. Relational specifications in ReLoC

has to provide the update:

cnt_authγ (n) >\N >\N \E cnt_authγ (n+ 1) ∗ |=>\E K[n]- e2 : τ.

The user is given the module view cnt_authγ (n) of the counter, and has to update it
to cnt_authγ (n+ 1). For that, the user has to appeal to cnt-update and has to provide
cntγ (q,n) themselves (either as an immediate resource or from an invariant in E,
which can be opened thanks to the update modality). After the abstract state is
updated, the user has to prove the refinement judgment |=>\E K[n]- e2 : τ . Similar
to the TaDA-style specifications, the mask on the refinement is set to >\E, allowing
the user to perform some reasoning on the right-hand side before closing all the
invariants from E.

4.5.4.2 Using HOCAP-style specifications

We use the HOCAP-style logically atomic relational specification from Figure 4.8 to
prove the refinement that we have seen in Section 4.3.4.2:

counteri - counters : (unit→ int)× (unit→ int).

Since the HOCAP-style specifications are stated in terms of abstract predicates,
instead of the ` 7→i n connective, we need a slightly different invariant than the one
we used for the proof using the TaDA-style specification in Section 4.5.3.2, namely:

cnt_ctxγ (ci ,N.cnt) ∗ ∃n ∈ N. cntγ (1,n) ∗ cs 7→s n ∗ isLocks(lk, false)
N.inv

.

After having established this invariant, the refinement proofs for the increment
and read methods proceed similar to the corresponding TaDA-style proofs (Sec-
tion 4.5.3.2), except that in the increment case the user has to use cnt-update alongside
inc-i-l-hocap in order to update the ghost state cntγ (1,n) accordingly. We do not give
the proof here, and direct the reader to the accompanying Coq mechanization.

In Section 4.5.5 we will another example of a client using the HOCAP-style
specification for the counter.

4.5.4.3 Proving HOCAP-style specifications

We discuss how to prove that the implementation of the fine-grained counter meets
the HOCAP-style specifications. To do so, we first use Iris’s ghost theory to define the
predicates cntγ (q,n) and cnt_authγ (n) (the details of this definition are omitted). We
then define the predicate cnt_ctxγ (c,N), which provides the internal invariant of the
module:

cnt_ctxγ (c,N), c ∈ Loc ∗ ∃n ∈ N. c 7→i n ∗ cnt_authγ (n)
N

This invariant states that the physical value n of c corresponds to the logical value n
of the predicate cnt_authγ (n). To see how this invariant is used, let us consider the
proof of inc-i-l-hocap for the inci operation. Since inci is defined recursively, we prove

109

4. ReLoC: a logic for proving contextual refinements

this rule by Löb induction. We proceed by symbolically executing the left-hand side,
accessing the invariantN to dereference c for some value n. It then remains to show:

if CAS(c,n,1 +n) then n else inci c- e2 : τ.

At this point we use the atomic symbolic execution rule for compare-and-set rel-cas-l
(with E = N). We introduce the update modality |V> >\N we obtain by accessing
the invariantN using Iris’s strong invariant access rule inv-access-strong, which is
needed because we need to access invariants in a non-well-bracketed way:

inv-access-strong

N ↑ ⊆ E

P
N E E\N .P ∗ (∀E ′ . .P E

′ E ′∪N True)

It remains to consider two cases. If the compare-and-set (CAS) has failed, we close
the invariant (by setting E ′ =>\N) and appeal to the induction hypothesis. If the
compare-and-set has succeeded, we are left to show the following:

· · · ∗ c 7→i (n+ 1) ∗ cnt_authγ (n) −∗ |=>\N n- e2 : τ.

We first use the update >\N >\N \E that is provided by the premise of the rule
to update cnt_authγ (n) into cnt_authγ (n + 1). This moreover provides a proof of
|=>\E n - e2 : τ . At this point our goal becomes |=>\N \E n - e2 : τ . We close the

invariant N (by setting E ′ = > \ N \ E) and restore the mask on the refinement
proposition in our goal, resulting in |=>\E n - e2 : τ , which is exactly what we

obtained from the update >\N >\N \E .

4.5.4.4 HOCAP-style specifications for non-linearizable operations

Using HOCAP-style specifications we can also specify operations that are not lin-
earizable. Consider the following “weak increment” function that we can add to the
counter module:

wkincr, λc. c← (!c + 1)

The function increments the value in the location c non-atomically. What kind of
specification can we give to wkincr? To answer this we have to examine what the
update represents in the HOCAP-style specifications. In the previous examples
with linearizable functions, the updates represented observations about the abstract
state that the clients could make, and they corresponded to the linearization points.
But there is no reason why we should pin them to linearization points only. Rather,
we can let the update correspond to any operation that is observable through the
abstract state. In wkincr there are two points where such operations happen, which
we can represent through two nested updates:
cnt-wk-incr-l

E ∩N ↑ = ∅ cnt_ctxγ (c,N)

∀n. cnt_authγ (n) >\N cnt_authγ (n) ∗ (∀m. cnt_authγ (m) >\N >\N \E

cnt_authγ (n+ 1) ∗ |=>\E K[()]- e2 : τ)

K[wkincr c]- e2 : τ

110

4.5. Relational specifications in ReLoC

newlockTL , λ(). (ref(0),ref(0))

acquireTL , λ(lo, ln). let n = inci ln in wait_loop n lo

wait_loop, λn lo. if (n = read lo) then () else wait_loop n lo

releaseTL , λ(lo, ln).wkincr lo

Figure 4.9: Ticket lock implementation.

The first update binds the value n, which is obtained from the initial read operation
!c. In the conclusion of this update the client needs to return the cnt_authγ (n)
predicate, as in the specification read-i-l-hocap. In addition to that predicate, the
client has to provide the second update, in which cnt_authγ (m) has to be updated to
cnt_authγ (n+1), corresponding to the assignment c← n+1. The valuem corresponds
to the intermediate state of the counter, which might have changed in between the
dereferencing of c and the assignment to it. The presence of two updates differentiates
methods that have a linearization point, such as inci , and non-linearizable methods,
such as wkincr.

In the next section we will see how a client might use the specification cnt-wk-

incr-l.

4.5.5 Ticket lock refinement from HOCAP-style specs

We show how our HOCAP-style relational specifications for the fine-grained con-
current counter (Figure 4.8) is used to prove that a ticket lock refines a spin lock (or,
rather, that a ticket lock refines any lock satisfying the specification in Figure 4.5).
The proof in this section demonstrates several important features of ReLoC. First,
it demonstrates compositionality of proofs in ReLoC both by employing relational
specifications for the left- and right-hand sides, and by reducing the refinement
proof of a program module into separate reusable refinement proofs of the module
functions. Second, the proof highlights the integration of Iris ghost state to facilitate
CAP-style [Din+10] reasoning with abstract predicates.

A ticket lock [MS91, Section 2.2] is a ticket-based data structure for mutual
exclusion, which is fair—threads racing to enter a critical section will gain access
to it in the order of arrival at the critical section. The implementation of the ticket
lock is given in Figure 4.9. The two locations associated with the lock, lo and ln,
point to the identifiers of the current owner of the lock, and to the total number of
issued tickets, respectively. When a thread wants to enter a critical section using the
acquireTL function, it first requests a new ticket (by atomically increasing the value
of ln using the inci function), and then spins until the value of the current owner of
the lock matches the ticket number (using wait_loop).

The function releaseTL uses the weak increment wkincr (Section 4.5.4.4) on the
location lo. It does not need to use an atomic increment (i.e., inci), because, if the lock

111

4. ReLoC: a logic for proving contextual refinements

newIssuedTickets

|V∃γ. issuedTicketsγ (0)

issueNewTicket

issuedTicketsγ (m)

|VissuedTicketsγ (m+ 1) ∗ ticketγ (m)

ticket-nondup

ticketγ (n) ticketγ (n)

False

Figure 4.10: The ticket ghost theory.

is used in a well-bracketed manner, only the owner of the lock will be calling the
releaseTL function.

Concretely, the refinement that we wish to show is the following:

pack(newlockTL,acquireTL,releaseTL)-

pack(newlock,acquire,release) : ∃α. (unit→ α)× (α→ unit)× (α→ unit).

Here, newlock, acquire and release are any operations that satisfy the relational
specification from Figure 4.5 (for example, the spin lock from Section 4.5.1.1).

Proof outline. To prove the refinement above we employ our general strategy for
proving refinements for stateful program modules in ReLoC:

1. We define an invariant lockInv linking together the underlying representations
of each individual pair of locks, which we use to define a witness for the
existential type α.

2. We prove the refinements for each method in the signature.

3. Finally, we combine those proofs together into a module refinement proof. This
is what we refer to as a component-wise refinement proof.

We stress that to carry out the proof we neither need to refer to the implemen-
tation of the fine-grained concurrent counter (on the left-hand side), nor to the
implementation of the spin lock (on the right-hand side). Rather, we only refer
to the HOCAP-style specification for the fine-grained counter and the relational
specification for the spin lock.

Proof of the refinement. To match up the physical representation of tickets in the
lock we use Iris’s ghost theory to define abstract predicates tracking the tickets. We
will use two ghost predicates: issuedTicketsγ (m) saying that m tickets have been
issued in total, and ticketγ (n) representing the n-th ticket. The predicates satisfy the
rules in Figure 4.10.

To prove the refinement of lock modules, we need to pick a relation (serving as
the interpretation for the witness α of the existential type) that links the two modules

112

4.5. Relational specifications in ReLoC

together. We use the the relation lockInt defined as follows:

lockInvγ (γo,γn, lk), ∃(on : N) (b : B). cntγo
(1, o) ∗ cntγn

(1,n) ∗ isLocks(lk,b) ∗
issuedTicketsγ (n) ∗ (ticketγ (o)∨ b = false)

lockInt((lo, ln), lk), ∃γo,γn,γ. cnt_ctxγo
(lo,N.o) ∗ cnt_ctxγn

(ln,N.n)∗
lockInvγ (γo,γn, lk)

N.inv

Here, (lo, ln) is the ticket lock on the left-hand side, and lk is the specification lock on
the right-hand side. The lockInt relation states that lo and ln are concurrent counters
with ghost names γo and γn, that satisfy the invariant lockInv. This invariant describes
the relation between the values representing two locks. It states that the values of
the counters lo and ln are o and n, respectively, and that exactly n tickets have been
issued. Furthermore, the right-hand side lock lk is locked iff the ticket ticketγ (o) of
the current owner of the lock is in the invariant; that is, ticketγ (o) was given up by a
thread that acquired the lock.

Using rel-pack we subdivide the main refinement proof into three refinements for
the functions that constitute the lock module:

1. [α := lockInt] |= newlockTL - newlock : unit→ α;

2. [α := lockInt] |= acquireTL - acquire : α→ unit;

3. [α := lockInt] |= releaseTL - release : α→ unit.

Proposition 4.8. [α := lockInt] |= newlockTL - newlock : unit→ α.

Proof. By rule rel-rec it suffices to show [α := lockInt] |= newlockTL ()- newlock () : α.
By applying the symbolic execution rules and new-i-l-hocap we are left with the goal:

cnt_ctxγn
(ln,N.n) ∗ cnt_ctxγo

(lo,N.o) ∗
cntγo

(1,0) ∗ cntγn
(1,0) ∗ isLocks(lk, false) −∗ [α := lockInt] |= (lo, ln)- lk : α.

From the premises we can allocate the invariant lockInvγ (γo,γn, lk), and obtain
lockInt((lo, ln), lk). We finish the proof with rel-return.

To prove the acquireTL refinement we need the following helper lemma.

Lemma 4.9. ticketγ (m) ` [α := lockInt] |= wait_loop m lo - acquire lk : unit, provided

we have lockInvγ (γo,γn, lk)
N.inv

.

Proof. We prove the refinement by Löb induction and symbolic execution. After
some pure symbolic executions steps we are left with the goal:

[α := lockInt] |= if (m = read lo) then () else wait_loop m lo - acquire lk : unit.

We then apply read-i-l-hocap, after which it remains to prove

cnt_authγo
(o) E

′ E ′\N cnt_authγo
(o) ∗

[α := lockInt] |= if (m = o) then () else wait_loop m lo - acquire lk : unit.

113

4. ReLoC: a logic for proving contextual refinements

for any number o. In casem , o, we symbolically execute the left-hand side and appeal
to the induction hypothesis. In case m = o, we proceed by accessing the invariant

lockInvγ (γo,γn, lk)
N.inv

. Note that it cannot be the case that b = true, because then
we would have two copies of ticketγ (o): one from the assumption of the lemma and
one from the invariant. Thus, the case b = true can be eliminated by ticket-nondup.
Then it must be the case that b = false. In that case we have isLocks(lk, false) and we
can apply acquire-r to update it to isLocks(lk,true), changing the right-hand side to
().

We finish by closing the invariant, picking this time b = true and storing the
ticketγ (o) from the assumption of the lemma in the invariant.

Proposition 4.10. [α := lockInt] |= acquireTL - acquire : α→ unit.

Proof. We use rel-rec and symbolic execution rules, and then inc-i-l-hocap and
Lemma 4.9. When we apply inc-i-l-hocap, we use the update to issue a new ticket
using issueNewTicket. This ticket will be used for the assumption of Lemma 4.9.

Proposition 4.11. [α := lockInt] |= releaseTL - release : α→ unit.

Proof. We use rel-rec, and then symbolic execution and cnt-wk-incr-l, after which
the new goal becomes

cnt_authγo
(n) E ′ cnt_authγo

(n) ∗ (∀m. cnt_authγo
(m) E

′ E ′\N

cnt_authγo
(n+ 1) ∗ |=>\N ()- release lk : τ)

for an arbitrary n. By framing cnt_authγo
(n), it suffices to show

cnt_authγo
(m) E

′ E ′\N cnt_authγo
(n+ 1) ∗ |=>\N ()- release lk : τ

for an arbitrary m. We utilize this update by accessing the invariant and getting
access to cntγo

(1, o). Using this proposition and cnt_authγo
(m) we apply cnt-update

to get
cntγo

(1,n+ 1) ∗ cnt_authγo
(n+ 1).

We frame the second separating conjunct, and use release-r to reduce the right-hand
side to (). Finally we close the invariant and finish the proof with rel-return.

4.6 Speculative reasoning using prophecy variables

In addition to Iris’s ordinary ghost state mechanism, which allows to reason about
the history of a program, Iris has recently been extended with a mechanism for
speculative reasoning based on prophecy variables, which allows to reason about the
future of a program [AL91; Jun+20]. A prophecy variable is a ghost variable that can
reference a value that is determined in the future of a program’s execution. While
the program that is subject to verification cannot make use of the value of a prophecy
variable itself—they are ghost variables—the value can be used in proofs, e.g., to
speculatively choose a reduction step in the right-hand program. In this section we

114

4.6. Speculative reasoning using prophecy variables

show how Iris’s mechanism for prophecy variables is integrated into ReLoC and can
be put to action to prove challenging refinements.

We start this section by illustrating the need for prophecy variables with a mo-
tivational example (Section 4.6.1). We then introduce the proof rules for prophecy
variables in ReLoC (Section 4.6.2), and use them to verify the motivational example
(Section 4.6.3). We finish with another example demonstrating the applicability of
prophecy variables to algebraic reasoning for concurrent programs (Section 4.6.4).

4.6.1 Motivational example

The ghost state mechanism of Iris that we have seen so far has allowed us to reason
about the history of the program’s execution. However, in some cases that is not
enough, and it is required to take the future of the program’s execution into account.
As a simple motivating example let, us consider the implementations new_coin and
new_coin_lazy of a coin module in Figure 4.11. They both implement a virtual coin
that can be flipped (using the first closure) and whose value can be read (using the
second closure), but there is an important difference. The eager version (new_coin)
calculates the flipped value in the flip function immediately—using the rand function
in Figure 4.12, which gives a non-deterministic Boolean value—and the read function
just reads that value. In contrast, the lazy version (new_coin_lazy) does not perform
any non-deterministic calculations in its flip operation flip_lazy. Instead, it sets the
value of the coin to “undetermined” (i.e., None), and postpones the actual calculation
to the read_lazy function.

While these two implementations are rather different, they are contextually
equivalent—for clients of the module it is not observable if the coin is flipped eagerly
or lazily. To prove that, we wish to establish the following refinements in ReLoC:

new_coin- new_coin_lazy : (unit→ unit)× (unit→ bool)

new_coin_lazy- new_coin : (unit→ unit)× (unit→ bool)

The first refinement can be proved with the tools that we have already described.
We start by symbolically executing both implementations, obtaining references c and
cl to the internal state of the eager coin and lazy coin, respectively. We then establish
the following invariant linking together the two internal states:

∃(b : B). c 7→i b ∗ (cl 7→s None∨ cl 7→s Some(b)) .

This invariant can be easily shown to be preserved during the flip- flip_lazy refine-
ment proof. During the read - read_lazy refinement proof we can choose which
value rand () reduces to based on the current value of c, using rel-rand-r.

However, we cannot prove the second refinement with the same strategy. The
problem is that during the flip_lazy- flip refinement we reset the value of cl (on the
left-hand side) to None, and then we have to establish a simulation on the right-hand
side by picking a value for rand () that will be assigned to c. But this value has to be
the same value that is picked by rand () in read_lazy. Thus we have to pick a value
“from the future”.

115

4. ReLoC: a logic for proving contextual refinements

The eager and lazy implementation:

new_coin, let c = ref(false) in
((λ(). flip c), (λ(). read c))

flip, λc. c← rand ()

read, λc. !c

new_coin_lazy, let c = ref(Some(false)) in
((λ(). flip_lazy c), (λ(). read_lazy c))

flip_lazy, λc. c← None

read_lazy, λc.match !c with
| Some(v)→ v
| None→

let x = rand () in
if CAS(c,None,x)
then x else read_lazy c ()

The instrumented lazy implementation with prophecy variables:

�new_coin_lazy, let c = ref(Some(false)) in
let p = newproph in
let lk = newlock () in(
(λ(). �flip_lazy c lk), (λ(). �read_lazy c lk p)

)
�flip_lazy, λc lk. acquire lk; c← None; release lk�read_lazy, λc lk p. acquire lk;

let r = match !c with
| Some(v)→ v
| None→

let x = rand () in
c← Some(x);
resolve p to x; x

in release lk; r

Figure 4.11: The implementations of the coin module.

116

4.6. Speculative reasoning using prophecy variables

rand, λ(). let y = ref(false) in

fork {y← true} ;
!y

rel-rand-l

∀b ∈ B. (K[b]- t : τ)

K[rand ()]- t : τ

rel-rand-r

b ∈ B e - K[b] : τ

e - K[rand ()] : τ

Figure 4.12: The implementation and relational specification of the rand function.

rel-newproph-l

∀~v p. proph(p,~v) −∗ ∆ |= K[p]- e2 : τ

∆ |= K[newproph]- e2 : τ

rel-resolveproph-l

|V> E ∃~v. proph(p,~v) ∗
(
∀~w. (~v = w :: ~w) ∗ proph(p, ~w) −∗ ∆ |=E K[()]- e2 : τ

)
∆ |= K[resolve p to w]- e2 : τ

rel-newproph-r

∀p. (∆ |=E e1 - K[p] : τ)

∆ |=E e1 - K[newproph] : τ

rel-resolveproph-r

∆ |=E e1 - K[()] : τ

∆ |=E e1 - K[resolve p to w] : τ

Figure 4.13: The ReLoC proof rules for prophecy variables.

To facilitate this style of reasoning, prophecy variables have been introduced
into Iris [Jun+20]. Originally, prophecy variables were used to prove refinements
between state machines [AL91]. Lately they have been used in Iris for establishing
linearizability of concurrent data structures without a fixed linearization point. In
the rest of this section we show how we integrated prophecy variables into ReLoC.

4.6.2 Prophecy instructions and proof rules

While Iris’s ordinary ghost state mechanism only appears at the level of the logic,
prophecy variables appear as instrumented instructions in the source program.4 The
instruction newproph creates a new prophecy variable. The instruction resolve p to v
resolves a prophecy variable p to a value v.

The symbolic execution rules for the prophecy instructions are given in Fig-
ure 4.13. In the right-hand side, the prophecy instructions are no-ops and therefore
do not have any pre- or post-conditions. Prophecy instructions that appear on the
left-hand side, however, operate on additional ghost state, and thus have pre- and
postconditions. The ghost predicate proph(p,~v) says that the prophecy variable p

4The semantics of HeapLang has to be instrumented to support prophecy variables, we refer the reader
to [Jun+20, Section 3] for details.

117

4. ReLoC: a logic for proving contextual refinements

will be resolved, in the future, with values from the vector ~v. Initially, a prophecy
variable created with newproph has an arbitrary vector ~v associated with it. Only
after symbolically executing resolve p to w we learn that this vector ~v contains w at
the head position. The trick behind the prophecy variables ghost state is that we can
already refer to the head element of ~v before resolving it to some w. We will see how
to use this in establishing the refinement between the lazy coin and the eager coin
in the next section. Note that the rules for the left-hand side are written in logically
atomic style: compare, for example, rel-resolveproph-l and rel-store-l.

To see how the instrumented instructions for prophecy variables are used, sup-
pose we want to prove a contextual refinement e1 -ctx e2 : τ that involves speculative
reasoning. We first prove a refinement ê1 - e2 : τ , where ê1 is a version of e1 instru-
mented with prophecy variables, and then prove e1 - ê1 : τ to show that the prophecy
variables can be erased. By soundness of ReLoC and transitivity of contextual refine-
ment, this gives a contextual refinement e1 -ctx e2 : τ that refers only to the original
programs.

4.6.3 Proving the coin refinement

To prove the refinement new_coin_lazy - new_coin : (unit→ unit) × (unit→ bool)
from Section 4.6.1 we instrument the lazy implementation new_coin_lazy with
prophecy variables so we can speculate on the outcome of rand in read_lazy. The
instrumented implementation �new_coin_lazy is shown in Figure 4.12. In addition to
prophecy variables, we also instrumented the implementation with locks to ensure
that there is no interference between updating the reference c and resolving the
prophecy variable p. With the instrumented program at hand, we will prove the
chain of refinements:

new_coin_lazy- �new_coin_lazy : (unit→ unit)× (unit→ bool)�new_coin_lazy- new_coin : (unit→ unit)× (unit→ bool).

Via ReLoC’s soundness theorem, we can compose these refinements at the level of
contextual refinement to obtain:

new_coin_lazy-ctx new_coin : (unit→ unit)× (unit→ bool).

Note that that we only use the instrumented implementation �new_coin_lazy for the
intermediate step, which means that prophecy variables and locks do not appear at
all in the final statement above. The approach of using prophecies as an intermediate
step works not just for closed programs, but also for open programs, as it does not rely
on an erasure theorem [Jun+20, Section 3.5]. Moreover, as the example demonstrates,
it allows us to make use of locks in the instrumented program.5.

The first refinement (new_coin_lazy - �new_coin_lazy) is easy to prove, we sim-
ply use the no-op symbolic execution rules for prophecies on the right-hand side

5Atomic prophecy resolution was introduced in [Jun+20] as an alternative to locks to deal with atomicity
of prophecy resolution.

118

4.6. Speculative reasoning using prophecy variables

(Figure 4.13). The second refinement (�new_coin_lazy- new_coin) is where the mech-
anism of prophecy variables comes to help. We symbolically execute the allocation
parts of �new_coin_lazy and new_coin. We then use the relational specification for
locks (Section 4.5.1.2) with the following lock invariant:

∃~v. proph(p,~v) ∗
(
(cl 7→i None ∗ c 7→s (hd ~v))∨ (∃(b : B). cl 7→i Some(b) ∗ c 7→s b)

)
.

This invariant says that if the value of the lazy coin is None, then the value of the
eager coin is determined by the prophecy variable p. There are two main implications
of this:

1. In the refinement between �flip_lazy and flip, the invariant can be (re)established,
because we can pick the value of rand () on the right-hand side to be the head
element of ~v—the future value of the lazy coin is already bound at this point.

2. In the refinement between �read_lazy and read (specifically, in the None

branch), we obtain a non-deterministic Boolean x from symbolically executing
rand () on the left-hand side, and we update the value of cl to be x. Moreover, we
resolve the prophecy variable p to x, which gives us much desired information:
the head element of ~v was x all along! This information allows us to transition
from the left disjunct to the right disjunct in the invariant and complete the
proof.

4.6.4 Algebraic reasoning about non-deterministic choice

In this section we give another example of the use of prophecy variables: we verify sev-
eral algebraic properties of non-deterministic choice modulo contextual equivalence.
(In)equational theories of the non-deterministic choice operator were previously con-
sidered in the context of domain theory, where non-determinism is usually modeled
using power domains [Plo76; Smy76], and in the context of algebraic effects [SV20;
JSV10]. Power domains and the denotational semantics approach does not seem to
scale easily to languages with concurrency and higher-order store. An operational
approach to equational theory of a programming language with non-determinism
was considered in [BBS13] using step-indexed logical relations. There the authors
show several contextual equivalences involving non-determinism, both finite (e.g.,
picking a Boolean) and countable (e.g., picking a natural number). In this subsection,
we provide conceptually simple proofs for contextual equivalences involving finite
non-determinism only. However, we were also able to prove that non-deterministic
choice and sequential composition distribute over each other. Proving this crucially
relies on speculative reasoning which we formalize using prophecy variables.

We do not have a non-deterministic choice operation built-in the language, but
we can define it using the rand function from Section 4.6.1. The operation or non-
deterministically executes one of its thunked arguments:

or t1 t2 , if rand () then t1 () else t2 ()

We write e1 ⊕ e2 for or (λ(). e1) (λ(). e2). The expression e1 ⊕ e2 thus non-
deterministically reduces to either e1 or e2. From the rules for the rand function

119

4. ReLoC: a logic for proving contextual refinements

(Figure 4.12), we derive the following symbolic execution rules for ⊕:

rel-or-l

(∆ |= K[e1]- t : τ)∧ (∆ |= K[e2]- t : τ)

∆ |= K[e1 ⊕ e2]- t : τ

rel-or-r-1

∆ |=E t - K[e1] : τ

∆ |=E t - K[e1 ⊕ e2] : τ

rel-or-r-2

∆ |=E t - K[e2] : τ

∆ |=E t - K[e1 ⊕ e2] : τ

The rules for ⊕ are reminiscent of the rules for disjunction (∨) in sequent calculus.
To symbolically execute ⊕ on the left-hand side (c.f. to eliminate ∨) it is necessary
to establish refinements for both operands (c.f. to consider both disjuncts), and
to symbolically execute ⊕ on the right-hand side (c.f. to introduce ∨) it suffices to
establish a refinement for one of the operands (c.f. prove one of the disjuncts).

Assume that e1, e2, e3 are closed programs of type τ . Then using rel-or-r-1, rel-or-
r-2, and rel-or-l, we prove the following equivalences:

e1 'ctx e1 ⊕ e1 : τ e1 ⊕ e2 'ctx e2 ⊕ e1 : τ e1 'ctx e1 ⊕ diverge : τ

e1 ⊕ (e2 ⊕ e3) 'ctx (e1 ⊕ e2) ⊕ e3 : τ (e1 ⊕ e2);e3 'ctx (e1;e3) ⊕ (e2;e3) : τ

The equational theory that we obtain here is similar to the one obtained from the
Hoare power domain, as e1 ⊕ diverge (where diverge is an infinite loop) is identified
with e1. The last equation states that non-deterministic choice distributes over
sequential composition, and is standard in, e.g., process calculi. What is less standard
is the following equation, which is not validated by models based on bisimulation:

e1; (e2 ⊕ e3) 'ctx (e1;e2) ⊕ (e1;e3) : τ.

This equation, however, holds in Kleene algebra-like models [Hoa+11; Koz94]. If we
think about proving this equation using the symbolic execution rules for ⊕, then we
can observe that proving the refinement in right-to-left direction

(e1;e2) ⊕ (e1;e3)- e1; (e2 ⊕ e3) : τ

is possible, and, by rel-or-l, it boils down to proving two refinements:

e1;e2 - e1; (e2 ⊕ e3) : τ e1;e3 - e1; (e2 ⊕ e3) : τ.

However, proving the refinement in left-to-right direction is harder:

e1; (e2 ⊕ e3)- (e1;e2) ⊕ (e1;e3) : τ.

If we want to use the symbolic execution rules for ⊕, we have to “synchronize” both
sides on e1. To do that, we have to pick a branch for ⊕ on the right-hand side before
we get to use rel-or-l on the left-hand side, but we do not know ahead of time which
branch to pick. To resolve this dependency, we use a prophecy variable to speculate
on which branch e2 ⊕ e3 will be taken on the left-hand side, and use the value of

120

4.7. The logical relations model of ReLoC

this prophecy variable to choose the appropriate branch of (e1;e2) ⊕ (e1;e3) on the
right-hand side.

The intermediate program that is instrumented with prophecy variables is as
follows:

let p = newproph in

e1;
(
(resolve p to 0;e2) ⊕ (resolve p to 1;e3)

)
We can easily verify that the original program e1; (e2 ⊕ e3) refines the instrumented
one. To verify that the instrumented program refines (e1;e2) ⊕ (e1;e3) we symbolically
execute newproph and obtain a predicate proph(p,~v) associating a vector of future
values ~v to the newly created prophecy variable p. Then we examine the head element
w of the prophecy values ~v. If w is 0, then we apply rel-or-r-1, otherwise we apply rel-

or-r-2. Without loss of generality, suppose that w is 0; that is, ~v = 0 :: ~w for some tail
~w. First we “synchronize” the refinement proof on e1 on both sides. Then we apply
rel-or-l. Because the premises of rel-or-l are joined by intuitionistic conjunction ∧,
we can use the resource proph(p,~v) for verifying both refinements:

proph(p,0 :: ~v′) −∗ resolve p to 0;e2 - e2 : τ

proph(p,0 :: ~v′) −∗ resolve p to 1;e3 - e2 : τ

The first refinement is reduced to e2 - e2 : τ , which follows from the fundamental
property (Theorem 4.6) and the assumption that e2 is well-typed. To prove the second
refinement we symbolically execute resolve p to 1 on the left-hand side, at which
point we reach a contradiction 0 = 1.

4.7 The logical relations model of ReLoC

ReLoC extends Iris with logical connectives and corresponding proof rules for reason-
ing about refinements. In this section we show how this is achieved by modeling the
connectives of ReLoC through a shallow embedding in Iris and proving the logical
rules of ReLoC as mere lemmas in Iris. We describe how the refinement judgment
e1 - e2 : τ is modeled through Iris’s weakest preconditions and a ghost thread pool
construction (Section 4.7.1) combined with a binary logical relation JτK∆ that describes
when values are related (Section 4.7.2). We then summarize how the ReLoC proof
rules (Section 4.7.4) and soundness theorem (Section 4.7.5) are proved. The key
definitions of the ReLoC model are shown in Figure 4.14.

The construction of our model generalizes prior work by Turon et al. [Tur+13;
TDB13], which culminated in the CaReSL logic, and was subsequently mechanized
in Iris by Krebbers et al. [KTB17] and Timany [Tim18]. We discuss the differences in
Section 4.7.3.

4.7.1 The refinement judgment

Recall from Section 4.3.1 that the intuitive meaning of the refinement proposition
e1 - e2 : τ is that any behavior of e1 can be simulated by some behavior of e2. This

121

4. ReLoC: a logic for proving contextual refinements

Refinement judgments:

∆ |=E e1 - e2 : τ , ∀i,K. spec_ctx −∗ i Z⇒K[e2] E >

wp e1 {v1. ∃v2. i Z⇒K[v2] ∗ JτK∆(v1,v2)}

Interpretation of types:

JαK∆ , λ(v1,v2).∆(α)(v1,v2)

JunitK∆ , λ(v1,v2). v1 = v2 = ()

JboolK∆ , λ(v1,v2). (v1 = v2 = true)∨ (v1 = v2 = false)

JintK∆ , λ(v1,v2). ∃n ∈ Z. v1 = v2 = n

Jτ × σK∆ , λ(v1,v2). ∃w1,w2,w
′
1,w

′
2. v1 = (w1,w2) ∗ v2 = (w′1,w

′
2) ∗

JτK∆(w1,w
′
1) ∗ JσK∆(w2,w

′
2)

Jτ + σK∆ , λ(v1,v2). ∃w1,w2. (v1 = inl (w1) ∗ v2 = inl (w2) ∗ JτK∆(w1,w2))∨
(v1 = inr (w1) ∗ v2 = inr (w2) ∗ JσK∆(w1,w2))

Jτ→ σK∆ , λ(v1,v2). � (∀w1,w2. JτK∆(w1,w2) −∗ (∆ |= v1 w1 - v2 w2 : σ))

J∀α. τK∆ , λ(v1,v2). �
(
∀Φ ∈Val×Val→ iProp�. ([α := Φ] ,∆ |= v1〈〉- v2〈〉 : τ)

)
J∃α. τK∆ , λ(v1,v2). ∃Φ ∈Val×Val→ iProp�. JτK[α:=Φ],∆(v1,v2)

Jµα. τK∆ , µΦ . λ(v1,v2). ∃w1,w2. v1 = fold(w1) ∗ v2 = fold(w2) ∗ .JτK[α:=Φ],∆(w1,w2)

Jref τK∆ , λ(v1,v2). ∃`1, `2 ∈ Loc. v1 = `1 ∗ v2 = `2 ∗
∃w1,w2. `1 7→i w1 ∗ `2 7→s w2 ∗ JτK∆(w1,w2)

(`1,`2)

Figure 4.14: The model of ReLoC in Iris.

intuitive idea is modeled in Iris as follows:

∆ |=E e1 - e2 : τ , ∀i,K. spec_ctx −∗ i Z⇒K[e2] E >

wp e1 {v1. ∃v2. i Z⇒K[v2] ∗ JτK∆(v1,v2)}

This definition is quite a mouthful, so let us go over it piece by piece. First,
it involves Iris’s weakest precondition connective wp e {Φ}, which gives the weakest
precondition under which execution of e is safe, and when e returns with value v, the
postcondition Φ(v) holds. Second, it involves the ghost thread pool connective i Z⇒ e,
which is defined through Iris’s ghost theory, and states that the i-th ghost thread is
executing a program e. Putting these pieces together (ignoring spec_ctx and E >

for now), this definition states that if a (ghost) thread i is executing right-hand side e2,
and left-hand side e1 reduces to some value v1, then a corresponding execution can be

122

4.7. The logical relations model of ReLoC

step-pure

spec_ctx i Z⇒ e e→pure e
′

|VE i Z⇒ e′

step-alloc

spec_ctx i Z⇒K[ref(v)]

|VE ∃`. i Z⇒K[`] ∗ ` 7→s v

step-store

spec_ctx i Z⇒K[`← w] ` 7→s v

|VE i Z⇒K[()] ∗ ` 7→s w

step-fork

spec_ctx i Z⇒K[fork {e}]
|VE ∃j. i Z⇒K[()] ∗ j Z⇒ e

Figure 4.15: Selected rules for the ghost thread pool.

made so that (ghost) thread i is executing right-hand side v2. The result values v1 and
v2 of the left-hand and right-hand side should be related via the value interpretation
JτK∆(v1,v2), which we model in Section 4.7.2 via a logical relation. The quantification
over K closes the definition under evaluation contexts. The expression e1 on the
left-hand side does not need to be closed under evaluation contexts because weakest
preconditions enjoy the rule: wp e {w.wp K[w] {Φ}} −∗ wp K[e] {Φ}.

The ghost thread pool predicates satisfy a number of symbolic execution rules
corresponding to executions in the operational semantics. A selection of these rules
is given in Figure 4.15. The spec_ctx proposition is an Iris invariant that ties together
the thread pool connectives i Z⇒ e and the heap assertions ` 7→s v with a matching
execution on the right-hand side. We will explain the role of spec_ctx in Section 4.7.5.

We should emphasize that the combination of the weakest precondition and
the ghost thread pool in the definition of ∆ |=E e1 - e2 : τ model the demonic
nature of e1 and the angelic nature of e2. To prove the weakest precondition
wp e1 {v1. ∃v2. i Z⇒K[v2] ∗ JτK∆(v1,v2)} one has to consider all behaviors of e1, but
has to establish only a single matching execution for e2 by using the appropriate rules
for the ghost thread pool.

4.7.2 The logical relation

The interpretation of types JτK∆(v1,v2), as defined in Figure 4.14, expresses when two
values v1 and v2 are related at type τ (in context ∆). The definition of JτK∆(v1,v2) fol-
lows the usual structure of a logical relation, it is defined recursively on the structure
of the type τ and uses the corresponding logical connectives via the Curry-Howard
isomorphism. For example, products are defined via (separating) conjunction, sums
are defined via disjunction, functions are defined via (separating) implication, uni-
versal types are defined via universal quantification, etc.

The interpretation of recursive types and reference types are somewhat more
interesting, as they make use of Iris-specific connectives. The interpretation of the
recursive type µα. τ makes use of Iris’s guarded fixed point operator µx. t, which
is used to define recursive predicates without a restriction of the variance of the
recursive occurrence x in t, but requires x to appear in guarded position, i.e., under
the later modality . [Jun+18b, Section 5.6]. To define the interpretation of the

123

4. ReLoC: a logic for proving contextual refinements

reference type ref τ , we use the invariant

∃w1,w2. `1 7→i w1 ∗ `2 7→s w2 ∗ JτK∆(w1,w2)
(`1,`2)

,

which states that whatever values are stored in `1 and `2 are always related at type
JτK∆.

The persistence modality � in the interpretation for function types and universal
types is used to ensure that the type interpretation is persistent and prevents the kind
of issues described in Section 4.4.2. Similarly, in the interpretation of the universal
and existential types we quantify over a persistent predicate Φ ∈Val×Val→ iProp�,
where iProp� is the subset of Iris propositions that is persistent.

4.7.3 Differences with prior work.

The definition of the refinement ∆ |=E e1 - e2 : τ and value interpretation JτK∆(v1,v2)
generalize the versions by Krebbers et al. [KTB17] and Timany et al. [Tim18], which
in turn adapted ghost thread pools by Turon et al. [Tur+13; TDB13] by modeling
these in Iris. The main novelty is that our refinement judgment ∆ |=E e1 - e2 : τ
is a first-class Iris proposition, instead of a meta-logical proposition. As we have
demonstrated throughout this paper, this modification is simple, albeit crucial for
writing conditional refinements and to obtain high-level proof rules for refinements.

Furthermore, to obtain high-level proof rules for invariants, we have equipped
the refinement judgment with a mask E, which keeps track of the invariants that may
be opened. To give the appropriate semantics to the mask E, our definition involves
the update modality E >. Note that the definition by Krebbers et al. [KTB17] and
Timany [Tim18] is logically equivalent to ` ∆ |=> e1 - e2 : τ , where the derivability
relation ` of Iris is used to turn the judgment into a meta theoretical proposition, and
the mask is set to >.

4.7.4 Deriving the primitive rules

In Section 4.4.3 we have demonstrated that ReLoC’s primitive monadic (rel-return
and rel-bind) and symbolic execution rules can be used to derive ReLoC’s high-level
proof rules, such as its type-directed structural rules. In this section, we indicate
how ReLoC’s primitive rules are proved by unfolding the definition of the refinement
judgment. We prove the symbolic execution rules through the following auxiliary
rules, which allow us to lift Iris’s rules for weakest preconditions and the ghost thread
pool rules (Figure 4.15) to the refinement judgment:

rel-wp-l

wp> e1 {v1. K[v1]- e2 : τ}
K[e1]- e2 : τ

rel-wp-atomic-l

|V> EwpE e1 {v1. |=E K[v1]- e2 : τ} atomic(e1)

K[e1]- e2 : τ

rel-step-r

∀j,K ′ . spec_ctx ∗ j Z⇒K ′[K[e2]] E ∃v2. j Z⇒K ′[K[v2]] ∗ |=E e1 - K[v2] : τ

|=E e1 - K[e2] : τ

124

4.7. The logical relations model of ReLoC

The rule rel-wp-l says that we can “take out” an expression e1 in context K on the
left-hand side, and reason about it using Iris’s weakest precondition. The rule rel-wp-

atomic-l is similar, but it also allows for opening an invariant around e1, in case e1 is
atomic.6 The rule rel-step-r says that if we have an expression e2 on the right-hand
side in an evaluation context K , and we can reduce e2 to a value v2, using the ghost
thread pool rules, then we can reduce the refinement proposition to |=E e1 - K[v2] : τ .

4.7.5 Soundness

Utilizing the definitions in this section, we outline the proof of the soundness theorem
(Theorem 4.7), which says that ReLoC’s refinement judgment is sound w.r.t. contex-
tual refinement. Formally, if ∆ | Γ |= e1 - e2 : τ is derivable in ReLoC for any ∆ with
Ξ ⊆ dom(∆), then Ξ | Γ ` e1 -ctx e2 : τ . To prove this theorem we make use of two key
lemmas: adequacy of the refinement judgment (Theorem 4.12), and the fact that the
refinement judgment is a precongruence (Lemma 4.13).

Theorem 4.12 (Adequacy of ReLoC). If ` ∆ |= e1 - e2 : τ is derivable in ReLoC, and
(e1,σ) −→∗tp (v1 :: ~ef 1,σ

′
1), then there exists v2, ~ef 2, and σ ′2 such that (e2,σ) −→∗tp (v2 ::

~ef 2,σ
′
2).

Lemma 4.13. Let C be a well-typed context C : (Ξ | Γ ` τ)⇒ (Ξ′ | Γ ′ ` τ ′), then we
have

�(∀∆.∆ | Γ |= e1 - e2 : τ) −∗ (∀∆′ .∆′ | Γ ′ |= C[e1]- C[e2] : τ ′)

where ∆ and ∆′ contain at least the type variables in Ξ and Ξ′ , respectively.

Lemma 4.13 is proved by induction on C making using of ReLoC’s type-directed
structural rules (Section 4.4.4). The proof of Theorem 4.12 is rather involved, so
before we discuss that, let us see how we prove the soundness theorem by putting
these two lemmas together.

Proof of Theorem 4.7 (Soundness for open terms). Let Ξ be a type environment, and
suppose that ∆ | Γ |= e1 - e2 : τ is derivable in ReLoC for any ∆ with Ξ ⊆ dom(∆). To
prove Ξ | Γ ` e1 -ctx e2 : τ , suppose we have typed context C : (Ξ | Γ ` τ)⇒ (∅ | ∅ ` τ ′),
and reduction (C[e1],∅) −→∗tp (v1 :: ~ef 1,σ1). By Lemma 4.13, we have C[e1]- C[e2] : τ ′ .
Then, by Theorem 4.12, we get that (C[e2],∅) −→∗tp (v2 :: ~ef 2,σ2) for some v2, ~ef 2 and σ2,
which concludes the proof.

Proof of Theorem 4.12 (Adequacy of ReLoC). Suppose that ∆ |= e1 - e2 : τ is derivable
in ReLoC, and we have (e1,σ) −→∗tp (v1 :: ~ef 1,σ

′
1). Now we should exhibit v2, ~ef 2, and

σ ′2 such that (e2,σ) −→∗tp (v2 :: ~ef 2,σ
′
2). The high-level structure of the proof is as

follows. First, we allocate the thread pool invariant spec_ctx and 0 Z⇒ e2 for the main-
thread of the right-hand side. Second, by definition of the refinement judgment, we
obtain a weakest precondition wp e1 {v1. ∃v2. 0 Z⇒ v2 ∗ JτK∆(v1,v2)}. Third, by opening

6Iris’s weakest precondition connective wpE e {Φ} is also equipped with a mask to keep track of which
invariants may be opened. This was the inspiration for the mask annotation at ReLoC’s refinement
judgment.

125

4. ReLoC: a logic for proving contextual refinements

spec_ctx and using adequacy of Iris’s weakest preconditions, we obtain (e2,σ) −→∗tp
(v2 :: ~ef 2,σ

′
2).

Carrying out these steps in detail—notably, setting up the required ghost theory
for the ghost thread pool—involves some intricate reasoning using Iris features
that are out of scope for this paper. We thus refer the interested reader to the Coq
mechanization, and only highlight the key part—the definition of the thread pool
invariant spec_ctx:

spec_ctx, ∃~e0,σ0. ∃~e,σ . spec_inv(~e,σ) ∗ (~e0,σ0) −→∗tp (~e,σ)
NReLoC .

The invariant asserts that given an initial configuration (~e0,σ0) for the right-hand side
(which we set to be (e2,σ) when allocating the invariant), the configuration (~e,σ) can
be reached via the reduction (~e0,σ0) −→∗tp (~e,σ). Here, spec_inv(~e,σ) is a connective
defined using Iris’s ghost theory that keeps track of the configuration of the ghost
thread pool and ensures it is consistent with the Z⇒ and 7→s connectives. The latter
is essential, as it allows us to conclude from spec_inv(~e,σ) and 0 Z⇒ v2 (as given by
the post condition of the weakest precondition in the definition of the refinement
judgment) that ~e is equal to v2 :: ~ef 2 for some ~ef 2. By definition of the invariant
spec_ctx, this gives us a reduction (e2,σ) −→∗tp (v2 :: ~ef 2,σ

′
2) for the right-hand side,

which is needed to conclude the third step of the proof.

4.8 The Coq mechanization of ReLoC

The Coq mechanization of ReLoC provides a soundness proof of ReLoC and infras-
tructure to carry out interactive tactic-based refinement proofs. It is built on top of
the mechanization of Iris in Coq [Iri20] and the Iris Proof Mode/MoSeL framework
for tactic-based proofs in separation logic [KTB17; Kre+18]. In this section we exam-
ine the way ReLoC’s language and type system are defined (Section 4.8.1), and how
the ReLoC logic is defined on top of that (Section 4.8.2). We then describe ReLoC’s
tactic support for interactive refinement proofs, which allows us to seamlessly carry
out proofs in Coq similar to those we have seen in this paper (Section 4.8.3). Finally,
we give an overview of the source code (Section 4.8.4).

4.8.1 The programming language

Iris is a programming language independent framework, which means that it can
be instantiated with a programming language of choice. In this paper, we do not
make use of this generality, and use HeapLang—the default language shipped with
Iris’s Coq development, which is essentially an untyped version of the language we
considered in Section 4.2. HeapLang is represented via a deep embedding and comes
with a set of notations so that programs can be written in Coq-style syntax. For
example, the Boolean implementation bitbool of the bit module from Section 4.3.3 is
written as follows:

Definition bit_bool : expr :=
(#true, (λ: "b", ∼"b"), (λ: "b", "b")).

126

4.8. The Coq mechanization of ReLoC

Binders in HeapLang are represented as strings, which makes it possible to write
programs in a human-readable way. This works well in practice because expression-
level substitution only acts on closed terms, and thus does not need to be capture
avoiding.

We equip HeapLang with a type system in the usual way—types type are defined
as an inductive data type, and the typing judgment typed is defined as an inductive
relation:

Inductive type :=
| TVar : var → type
| TProd : type → type → type
| TArrow : type → type → type
| TExists : {bind 1 of type} → type
| (* ... *).

Inductive typed : stringmap type → expr → type → Prop :=
| Var_typed Γ x τ :

Γ !! x = Some τ → (Γ `t Var x : τ)
| Pair_typed Γ e1 e2 τ1 τ2 :

(Γ `t e1 : τ1) → (Γ `t e2 : τ2) → (Γ `t (e1, e2) : τ1 * τ2)
| Fst_typed Γ e τ1 τ2 :

(Γ `t e : τ1 * τ2) → (Γ `t Fst e : τ1)
| (* ... *).

We use the notation Γ `t e : τ for typed Γ e τ, and overload the standard Coq
notations for types, e.g., we use the notation τ1 * τ2 for TProd τ1 τ2 and τ1→τ2 for
TArrow τ1 τ2. Since type-level substitution acts on (potentially) open terms, and
therefore needs to be capture avoiding, we use De Bruijn indices to represent type-
level binders through the Autosubst Coq library [STS15]. For example, the type
TBit, ∃α.α×(α→ α)×(α→ bool) from Section 4.3.3 is represented in Coq as follows
(# is notation for TVar):

Definition bitτ : type := ∃: #0 * (#0 → #0) * (#0 → TBool).

4.8.2 The ReLoC logic

Recall from Section 4.7 that ReLoC is defined as a shallow definition in Iris—the
ReLoC connectives are definitions in Iris, and the ReLoC proof rules are lemmas in
Iris. In Coq we follow the same approach. At the core of ReLoC we have the definition
lrel of semantic types, i.e., persistent Iris relations over HeapLang values:

Record lrel Σ := LRel {
lrel_car :> val → val → iProp Σ;
lrel_persistent v1 v2 : Persistent (lrel_car v1 v2)

}.

127

4. ReLoC: a logic for proving contextual refinements

Here, iProp Σ is the type of Iris propositions.7 The record bundles together a relation
together with a proof that it is persistent. The notation :> declares the field lrel_car
as a coercion. In the Coq mechanization of ReLoC we generalize the refinement
judgment ∆ |=E e1 - e2 : τ to range over semantic types (lrel) instead of syntactic
types (type):

Definition refines (E : coPset) (e1 e2 : expr) (A : lrel Σ)
: iProp Σ := ∀ j K, spec_ctx -∗ j Z⇒ fill K e2 ={E,>}= ∗

WP e1 {{ v1, ∃ v2, j Z⇒ fill K (of_val v2) ∗ A v1 v2 }}.

We use the notation REL e1 << e2 @ E : A for refines E e1 e2 A. This definition makes
use of the ghost thread pool connectives spec_ctx and j Z⇒ e, as discussed in Sec-
tion 4.7.1, and which were originally defined in Coq in [KTB17].

To formalize the refinement judgment on syntactic types, we first define the
semantic interpretation JτK∆, denoted as interp τ ∆ in Coq, which maps syntactic
types τ to semantic types. To define the semantic interpretation, we define seman-
tic type formers, which are combinators on semantic types corresponding to each
syntactic type former. For example, the semantic product type is defined as follows:

Definition lrel_prod (A B : lrel Σ) : lrel Σ := LRel (λ v1 v2,
∃ w1 w2 w1’ w2’, pv1 = (w1,w1’)%Vq ∧ pv2 = (w2,w2’)%Vq ∧ A w1 w2 ∗ B w1’ w2’).

Here, we use Iris’s notion pϕq to embed Coq propositionsϕ : Prop into Iris, although
on paper we take the equality predicate to be primitive. With the above defini-
tions at hand, we can now define ReLoC’s refinement judgment ∆ |=E e1 - e2 : τ as
REL e1 << e2 @ E : interp τ ∆ .

The proof rules. For example, the rule rel-load-r is formalized as the following
lemma:

Lemma refines_load_r E K l q v e1 A :
↑ relocN ⊆ E →
l 7→s{q} v -∗
(l 7→s{q} v -∗ REL e1 << fill K (of_val v) @ E : A) -∗
REL e1 << fill K !#l @ E : A.

The lemma states that, under the assumption that relocN↑ ⊆ E (i.e., ReLoC’s internal
invariants are available in the mask E), the following separation logic formula holds:

`
q7−→s v −∗ (` q7−→s v −∗ |=E t - K[v] : A) −∗ |=E t - K[!`] : A

This is exactly the internalization of rel-load-r. The other ReLoC proof rules are
mechanized in a similar way.

7The parameter Σ describes the kind of ghost state available in Iris. It is an important but technical
detail that can safely be ignored for the purpose of this paper. An interested reader is directed to [Jun+18b,
§4.7].

128

4.8. The Coq mechanization of ReLoC

Soundness. The versions of ReLoC’s soundness theorem for closed (Theorem 4.1)
and open terms (Theorem 4.7) are stated in Coq as follows:

Lemma refines_sound Σ ‘{relocPreG Σ} e1 e2 τ :
(∀ ‘{relocG Σ} ∆, ` REL e1 << e2 : interp τ ∆) →
∅ � e1 -ctx e2 : τ.

Lemma refines_sound_open Σ ‘{relocPreG Σ} Γ e1 e2 τ :
(∀ ‘{relocG Σ} ∆, ` {∆;Γ } � e1 -log e2 : τ) →
Γ � e1 -ctx e2 : τ.

Here, Γ � e1 -ctx e2 : τ is the notion of contextual refinement, {∆; Γ } � e1 -log e2 : τ
is the refinement judgment lifted to open expressions, and ` P expresses that the Iris
proposition P is derivable.

Example proof: refinement of the bit module. In order to prove the contextual
refinement ∅ � bit_bool -ctx bit_nat : bitτ from Section 4.3.3, it suffices to prove
the following:

Lemma bit_refinement ∆ :
` REL bit_bool << bit_nat : interp bitτ ∆.

To prove this lemma, we use the relation R, which is the same as the one in Sec-
tion 4.3.3, but wrapped into a semantic type (lrel) to ensure it is persistent:

Definition R : lrel Σ := LRel (λ v1 v2,
(pv1 = #trueq ∧ pv2 = #1q) ∨ (pv1 = #falseq ∧ pv2 = #0q)).

Using the relation R, a Coq proof of the desired refinement is as follows:

Lemma bit_refinement ∆ :
` REL bit_bool << bit_nat : interp bitτ ∆.

Proof.
unfold bitτ; simpl.
(* apply rel-pack *)
iApply (refines_exists R).
(* repeatedly apply rel-pair *)
progress repeat iApply refines_pair.
- (* apply rel-return and solve the goal *)

rel_values.
- (* ... *)

Qed.

Finally, we combine bit_refinement with the soundness theorem to get a closed proof
of contextual refinement:

Theorem bit_ctx_refinement : ∅ � bit_bool -ctx bit_nat : bitτ
Proof. auto using (refines_sound relocΣ), bit_refinement. Qed.

It is important to emphasize that the contextual refinements, which we obtain in the-
orems like bit_ctx_refinement above, are closed propositions in Coq. The statement
(the type) of bit_ctx_refinement does not refer to ReLoC or Iris. This illustrates that

129

4. ReLoC: a logic for proving contextual refinements

-------------------∗
P -∗ (P -∗ Q) -∗ Q

(a) Before executing any tactics.

"H1" : P
"H2" : P -∗ Q
-------------------∗
Q

(b) After iIntros "H1 H2" .

Figure 4.16: Interactive proof of lemma example in IPM.

the only parts of the trusted code base of our development are the notions that are
involved in the definition of contextual refinement, i.e., the operational semantics
and typing of contexts.

4.8.3 Tactic support for interactive proofs

To prove refinement judgments, like the bit refinement

REL bit_bool << bit_nat : interp bitτ ∆

from the previous section, we can repeatedly apply the Iris lemmas corresponding
to the ReLoC proof rules. However, doing so directly quickly becomes unwieldy, as
the user has to manually provide the resources (like the precondition l 7→s{q} v of
refines_load_r), and manually select the evaluation context K. For better usability
we provide tactic support for symbolic execution.

Interactive separation logic proofs. To explain the tactics for ReLoC that we have
defined, let us first look at the general tactic support in Iris. The Iris Proof Mode
(IPM) [KTB17] and its successor MoSeL [Kre+18] allow us to carry out separation
logic proofs interactively, in the style of regular tactic-based proofs in Coq. IPM
provides a convenient representation of sequents for separation logic and tactics for
manipulating them, allowing for interactive proof development in the style of regular
proofs in Coq. To illustrate this, consider the following separation logic tautology:

Lemma example (P Q : iProp Σ) : P -∗ (P -∗ Q) -∗ Q.
Proof. iIntros "H1 H2". iApply ("H2" with "H1"). Qed.

The intermediate results can be seen in Figure 4.16. Applying iIntros "H1 H2" .
introduces the hypothesis P and P -∗ Q into the IPM context, giving them names
H1 and H2, respectively. Then, iApply ("H2" with "H1") . applies the separating
implication P -∗ Q to the goal, using the hypothesis H1 : P as the assumption.

Symbolic execution tactics. In addition to tactics like iIntros and iApply, IPM
provides tactic for symbolic execution in weakest preconditions. We built similar
tactics on top of IPM for symbolic execution in refinement judgments. To demonstrate
that, consider the following example:

130

4.9. Related work

"Hl" : l 7→s #0
------------------------------∗
REL #2 << (!#l + #2) : lrel_int

(a) Before applying rel_load_r.

"Hl" : l 7→s #0
-----------------------------∗
REL #2 << (#0 + #2) : lrel_int

(b) After applying rel_load_r.

"Hl" : l 7→s #0
----------------------------∗
REL #2 << #(0 + 2) : lrel_int

(c) After applying rel_pures_r.

Figure 4.17: Interactive refinement proof of lemma example_load in ReLoC.

Lemma example_load l :
l 7→s #0 -∗ REL #2 << (!#l + #2) : lrel_int.

Proof. iIntros "Hl". rel_load_r. rel_pures_r. rel_values. Qed.

The results of rel_load_r and rel_pures_r can be seen in Figure 4.17. The tactic
rel_load_r symbolically executes the dereferencing operation, and the tactic
rel_pures_r symbolically executes as many pure reduction steps as possible. The
tactic rel_values finishes the goal since both sides are values. Similarly, we built
tactics for all other language connectives (both on the left- and right-hand side). The
tactics were developed in a similar way to the weakest-precondition tactics from IPM,
and we refer the reader to [KTB17] for details.

4.8.4 Overview of the source code

The Coq mechanization contains around 10300 lines of code, of which approximately
1. 1315 lines for mechanization of the model of ReLoC (Section 4.7), including the
adequacy theorem (Theorem 4.12), and the primitive and derived rules (Section 4.4);
2. 1200 lines for the tactics (Section 4.8.3); 3. 1450 lines for the mechanization of the
type system (Section 4.2), and the soundness theorem for open term (Theorem 4.7);
4. 6050 lines for the examples and case studies (including the case studies we describe
in the upcoming Sections 4.10.1 and 4.10.2); 5. and 140 lines for tests (mainly
regression tests for the tactics).

4.9 Related work

We described some of the most closely related work in the introduction (Section 4.1),
we now discuss other related work on logical relations models, relational logics,
atomic specifications, speculative reasoning, and linearizability.

131

4. ReLoC: a logic for proving contextual refinements

Logical relations models. Logical relations models over denotational and opera-
tional semantics have an extensive history. To cover advanced programming language
features such as recursive types and higher-order references, logical relations with
step-indexing have been introduced [AAV02; Ahm04; ADR09; Bir+11]. Step-indexing
has shown to be very effective by a large body of work on step-indexed logical rela-
tions models, e.g., [NDR11; HD11; BST12; ÇPG16; RG18]. However, in these papers
step-indices appear explicitly in the definition of the logical relations model and
the proofs about it. In contrast in this paper we have used the “logical approach” to
step-indexed logical relations. This approach, pioneered by Dreyer et al.in the LSLR
logic [DAB09], hides step-indices by abstracting and internalizing them in a logic
using the later modality (.) [App+07]. Dreyer et al.used this approach to construct
a binary logical relations model for System F with recursive types [DAB09], and
later extended the approach as part of the LADR logic to cover existential types and
references [Dre+10].

The logical approach to logical relations was further refined by Turon
et al. [Tur+13; TDB13], culminating in the CaReSL logic, who showed how
Hoare triples and ghost thread pools can be used to define a binary logical relation
for fine-grained concurrency. Subsequently, a version of this binary logical relation
was defined and mechanized in Iris by Krebbers et al. [KTB17] and Timany [Tim18].
However, in these papers, logical refinement judgments are meta-logical state-
ments, and because of that, there are no high-level proof rules for establishing
and combining refinements. Instead, to prove a refinement judgment, the user
of the logic had to unfold the definition of the refinement judgment, and reason
directly in CaReSL or Iris. In this work we provide a generalization that makes
refinement judgments first-class logical statements, which is crucial to reason
abstractly about invariants and formulate atomic specifications. The technical
differences are discussed in Section 4.7.3. Thus we really make use of the fact that
Iris is a higher-order logic—CaReSL is only a second-order logic and it would not be
possible to make refinement judgments first-class in CaReSL (indeed Iris is not only
based on CaReSL, but just as much on the higher-order iCAP logic of Svendsen and
Birkedal [SB14]). We also provide a mechanization in Coq with tactical support that
supports the same backwards reasoning style that is employed for proving weakest
preconditions in Iris [KTB17].

Apart from the directions that we explored in this paper, there has been an
abundance of work on logical relations models in Iris. Binary logical relations
models in Iris have been used for proving contextual equivalence in the context
of Haskell’s ST monad [Tim+18], first-class per-thread continuations [TB19], and
types-and-effect systems [KSB17]. Unary logical relations models in Iris have been
used for proving type safety and data-race freedom of the Rust type system [Jun+18a;
Dan+20; Jun+21], type safety of session types [Hin+21], type safety of Scala’s core
calculus DOT [Gia+20], and robust safety [SGD17; Sam+20a]. Logical relations in
Iris have also been used for showing other relational properties such as termination-
preserving refinement [TJH17], non-interference of concurrent programs [FKB21b],
and recovery refinements (refinements in the presence of potential crashes) [Cha+19].
Nearly all of the aforementioned developments have accompanying mechanizations
in Coq, and in some of those mechanizations the authors define their own tactics.

132

4.9. Related work

They define tactics for either their version of weakest preconditions or for derived
operations, but, to the best of our knowledge, they do not define tactics for reasoning
about the logical relation directly.

Relational logics. Logics for proving relational properties of programs have a long
history, going back to the earlier work of Plotkin and Abadi [PA93]. Since then many
relational logics have been developed addressing various applications, e.g., proba-
bilistic properties in security [BGZ09; Bar+12; Bar+13] and cost analysis [Çiç+17;
Rad+18]. Here we discuss some more recent work on relational logics that are capable
of proving program refinements, with a focus on logics with support for higher-order
languages, languages with mutable state, and languages with concurrency.

Earlier work on relational logics targeted programming languages with mutable
state, but no concurrency. Relational Hoare logic [Ben04] and Relational Separation
logic [Yan07] can be used for reasoning about relational properties for first-order
imperative programs, and they have inspired several extensions, for example to
probabilistic languages [BGZ09].

Relational Higher Order Logic (RHOL) [Agu+19] is a recent relational higher-
order logic for reasoning about relational properties of programs using relational
refinement types. The main judgment of RHOL allows one to prove that a relational
formula ϕ holds for two expressions, which do not necessarily have the same type.
While it is not directly possible to reason about expressions with different types in
ReLoC, we can relate them by using a type variable α and a suitable interpretation of
α in the environment ∆. The authors prove soundness of RHOL and show how to
embed a number of type systems into it. They provide proofs of various relational
properties such as non-interference and relative cost, as provided by the systems they
embed into RHOL. In our work we consider only one (family of) relation(s), namely
the logical relation for contextual refinement. The programming language considered
in RHOL is a pure terminating variant of simply-typed PCF, while we consider a
much richer programming language with general references and concurrency.

Liang and Feng developed a relational rely-guarantee style logic [LF13], which
can be used to prove refinement for fine-grained concurrent algorithms (including
those with helping) but, in contrast to ReLoC, it can only be used to reason about
first-order programs.

A relational logic for a sequential class-based language with dynamically allocated
objects has been introduced by Banerjee et al. [BNN16]. Their relational logic is based
on region logic [BNR13], a first-order logic, which is amenable to SMT-based automa-
tion. Their relational logic is aimed at proving refinement and non-interference. The
approach was further extended in [NBN19] to cover representation independence
proofs using per-modules invariants and coupling relations. In contrast, we focus on
reasoning about refinements, but also treat concurrent programs and higher-order
store, and we provide tool support for tactic-based interactive verification in Coq.

While not a logic in the strict sense, Relational Hoare Type Theory (RHTT) [NBG13]
is a dependent type theory for specification and verification of relational properties
of higher-order programs with mutable first-order state, capable of expressing

133

4. ReLoC: a logic for proving contextual refinements

information flow and access control properties. The object programming language of
RHTT and the type system itself are shallowly embedded in Coq.

Atomic specifications. To our knowledge, we are the first to study logically atomic
specifications in the relational setting. Logically atomic specifications originate in
Hoare-style program logics. Jacobs and Piessens [JP11] have originally developed a
methodology for specifying logically atomic operations. In their approach, specifi-
cations are parameterized by auxiliary code that is performed at the linearization
point. This approach was refined to what we refer to as HOCAP-style specifications,
originally introduced in the context of the eponymous logic [SBP13], where the role
of auxiliary code is filled by view shifts [Din+13], which in this paper are given by
Iris’s update modality (Section 4.5.4). Compared to the original Jacobs-Piessens
approach, in HOCAP-style specifications, the physical state that a logically atomic
function operates on is hidden behind an abstract predicate. Furthermore, HOCAP-
style specifications can also be formulated for non-logically atomic operations, as we
have seen in Section 4.5.4.4. The HOCAP-style specifications were later adopted in
the iCAP logic [SB14] and Iris logic [BB20, Chapter 11].

Because Jacobs-Piessens and HOCAP-style specifications require parameterizing
the (ghost) functions that are executed at the linearization points, such specifications
are often referred to as higher-order. As an alternative to this higher-order approach,
da Rocha Pinto et al.have introduced the notion of logically atomic triples in their
program logic TaDA [RDG14; Roc17]. Logically atomic triples are a first-order
construct, built in as a primitive construct into the logic, which can be used to specify
the atomic updates that a program performs. The atomic triples can be systematically
composed in the style of Hoare logic. A more detailed comparison between the first-
order and higher-order approach is given in [DRG18]. TaDA-style logically atomic
triples were adapted for Iris by Jung et al. [Jun+15; Jun+20]. Specifically, they are
encoded as derived constructs, using the Jacobs-Piessens approach, that satisfy the
TaDA-style rules.

Speculative reasoning. To facilitate speculative reasoning, we employ the mecha-
nism for prophecy variables recently introduced in Iris [Jun+20]. Prophecy variables
were first introduced by Abadi and Lamport [AL91] for the purpose of proving re-
finements of state machines. The idea to use prophecy variables in program logic
originates in the rely-guarantee style logic of Vafeiadis [Vaf08], although his treat-
ment of prophecy variables is informal, and he appeals to Abadi and Lamport [AL91]
for soundness.

Prophecy variables are not the only tool for carrying out speculative reasoning.
Both CaReSL [TDB13] and extended LRG [LF13] are program logics capable of
proving refinements of programs with future-dependent linearization points. Both
employ, albeit in different forms, a mechanism for recording multiple potential
logical states of the program. These multiple states can then be coalesced into a single
one, once the linearization point is determined, and that resulting state is used for
establishing the refinement.

134

4.10. Discussion and conclusion

Other approaches [Khy+17; Del+17] for proving linearizability of algorithms with
future-dependent linearization points use Hoare logics with auxiliary state to track
the abstract history of a program as a partial order. The crucial property is that all
total extensions of the partial order result in valid linear histories of the program.

Other work on linearizability. One of the main application of ReLoC is to prove
linearizability of concurrent algorithms, by reducing it to contextual refinements.
Proving linearizability has a long history, and the program logic based approach is
not the only one. Other methods include automated model checking based solutions
[Liu+09; VYY09; Čer+10; Bur+10] and static analysis, in particular shape analysis,
[Ami+07; Ber+08; Vaf09]. The model checking approaches in question do not prove
linearizability, but automatically check execution traces for linearizability, bounding
the heap or the number of threads. Indeed, model checking approaches are designed
to find bugs in a “push-button” fashion and can generate counterexample traces.
Approaches based on static analysis are usually sound even for unbounded heaps
and threads, but limited to first-order programs.

4.10 Discussion and conclusion

In this paper we have presented ReLoC—the first mechanized relational logic for
proving refinements of fine-grained concurrent higher-order programs. We have
demonstrated that ReLoC is expressive enough to formally prove contextual refine-
ments of concurrent programs in a modular way, by employing relational specifica-
tions of programs. Moreover, the mechanization of ReLoC in Coq allows us to carry
out tactic-based interactive proofs in an intuitive way, by using ReLoC’s type-directed
structural rules and symbolic execution rules, coupled with the powerful mechanisms
from Iris, such as invariants, ghost state, and prophecy variables.

In the remainder of this paper we discuss other case studies that we have mecha-
nized in ReLoC (Section 4.10.1), discuss the “escape hatch” of ReLoC (Section 4.10.2)
for verifying programs that cannot be handled by ReLoC, and outline some directions
for future work (Section 4.10.3).

4.10.1 Other examples and case studies

In addition to the examples that we have presented in the paper, we have mechanized
a number of examples from the literature on logical relations in ReLoC in Coq. Below
we give a short summary of those examples.

• Linearizability of the Treiber stack [Tre86];

• Refinement of higher-order cell objects from [KW06; ADR09];

• Refinement of a symbol lookup table and a name generation module from
[ADR09];

• Many equivalences from [DNB12], adapted for the concurrent setting, includ-
ing variations of the “awkward example” from [PS98], and the “higher-order
profiling” example modified to use the atomic increment function inci ;

135

4. ReLoC: a logic for proving contextual refinements

• Equivalence between different ways of defining the fixed point combinators;

• Equivalence between late-choice and early-choice examples from [Tur+13];

• Algebraic laws for the parallel composition operation and its interaction with
non-deterministic choice and sequential composition, inspired by the work on
Concurrent Kleene Algebra [Hoa+11];

• Linearizability of the Michael-Scott queue [MS96], mechanized by Simon Friis
Vindum and Lars Birkedal [VB21].

4.10.2 The “escape hatch”

The rules of ReLoC are sound, but not complete. In particular, there are some exam-
ples that cannot be verified in ReLoC completely. One class of such examples that
we know of, are refinements of fine-grained concurrent data structures with external
linearization points (as opposed to fixed linearization points or future-dependent
linearization points; see [DD15] for a survey outlining the differences). Such external
linearization points are present, for example, in algorithms that use helping or work-
stealing. Fortunately, ReLoC’s model on top of Iris provides an “escape hatch” that
still allows us to verify some data structures with helping.

In the appendix [FKB21a] we consider an example of such a data-structure: a fine-
grained concurrent stack with helping, a simplified version of the elimination-backoff
stack from [HSY04]. We prove that this stack with helping refines a coarse-grained
stack (thus showing that the stack with helping is linearizable). The stack with
helping is interesting because two threads that perform a push and pop operation
concurrently can eliminate each other, by exchanging data through a side channel,
thus reducing the contention for the top node of the stack. To verify this example we
make use of ReLoC’s “escape hatch”—we unfold the definition of ReLoC’s refinement
judgment, and perform an explicit proof in terms of ReLoC’s model in Iris so we can
explicitly manipulate the ghost thread pool. As we demonstrate, the “escape hatch”
does not render ReLoC useless for this example: we still use ReLoC’s proof rules to
carry out the majority of the proof. Only for a small part of the proof we need to
work in the model. This is achieved by encapsulating the elimination mechanism of
the stack, for which we can provide a logically atomic relational specification that is
proved in the model of ReLoC. This specification can then be used through ReLoC’s
high-level rules to verify the complete data structure without further breaking the
abstraction.

4.10.3 Future work

In future work we would like to examine the possibility of a more principled approach
to specifying and verifying algorithms with helping, without having to reason in the
model of ReLoC. In addition, it would be interesting to explore alternative approaches
to speculative reasoning that do not involve prophecy variables. Furthermore, we
would like to study applications of ReLoC to type-directed program transformations
(for example typed closure conversion [AB08]) and message-passing programs (for
example, by integration with the Iris-based Actris logic [HBK20; Hin+21]).

136

4.10. Discussion and conclusion

It would also be interesting to see how the ReLoC approach can be used for
verifying other kinds of refinements, for example termination-sensitive refine-
ments [TJH17] or refinements in the presence of crashes [Cha+19].

137

5SeLoC: a logic for proving

non-interference

5.1 Introduction

Non-interference is a form of information flow control (IFC) used to express that confi-
dential information cannot be leaked to attackers. To establish non-interference of
modern programs, it is crucial to develop verification techniques that support chal-
lenging programming paradigms and programming constructs such as concurrency.
Furthermore, to scale up these techniques to larger programs, it is important that they
are compositional. That is, they should make it possible to establish non-interference
of program modules in isolation, without having to consider all possible interference
from the environment and other program modules.

Much effort has been put into developing these verification techniques. In terms of
expressivity, techniques have been developed that support dynamically allocated ref-
erences and higher-order functions [PS03; RG18; Zda02], and concurrency [MSS11;
SS00; MSE18; Mur+16; SMS20; Kar+18; EM19]. Despite recent advancements, the
expressivity of available techniques for non-interference still lags behind the expres-
sivity of techniques for functional correctness, which have seen major breakthroughs
since the seminal development of concurrent separation logic [OHe07; Bro07]. There
are several reasons for this.

First, a lot of prior work on non-interference focused on type systems and type
system-like logics, e.g., [PS03; MSS11; MSE18; EM19; Kar+18]. Such systems provide
strong automation (by means of type checking), but lack capabilities to reason about
functional correctness, and are thus inherently restrictive in the kind of programs
they can verify. For example, it may be the case that the confidentiality of the contents
of a reference depends on runtime information instead of solely static information
(this is called value-dependent classification [ZM07; Mur+16; NBG13; LC15; GTA19]).

Second, proving non-interference is harder than proving functional correctness.
While functional correctness is a property about each single run of a program, non-
interference is stated in terms of multiple runs of the same program. One has to show
that for different values of confidential inputs, the attacker cannot observe a different
behavior.

To overcome the aforementioned shortcomings, we take a new approach that
combines program logics and type systems: we present a concurrent separation logic
for non-interference on top of which we build a type system for non-interference.

139

5. SeLoC: a logic for proving non-interference

Program modules whose non-interference relies on functional correctness (and thus
cannot be type checked) can be assigned a type through a manual proof in our
separation logic. This combination of separation logic and type checking makes it
possible compositionally to establish non-interference of programs that consist of
untyped and typed parts.

Although ideas from concurrent separation logic have been employed in the
context of non-interference before [Kar+18; EM19], we believe that in the context of
non-interference the combination of typing and separation logic is new. Moreover,
our approach provides a number of other advantages compared to prior work:

• Our separation logic supports fine-grained concurrency. That is, it can verify
programs that use low-level atomic operations like compare-and-set to im-
plement lock-free concurrent data structures and high-level synchronization
mechanisms such as locks/mutexes. In prior work, such mechanisms were
taken to be language primitives.

• Our separation logic is higher-order, making it possible to assign very general
specifications to program modules.

• Our separation logic is relational, making it possible to reason about multiple
runs of a program with different values for confidential inputs.

• Our separation logic provides a powerful invariant mechanism to describe
protocols on the shared state, making it possible to reason about sophisticated
forms of sharing, as in value-dependent classifications.

In order to build our logic we make use of the Iris framework for concurrent
separation logic [Jun+15; Jun+16; Kre+17; Jun+18b], which provides basic building
blocks, including the invariant mechanism. To combine typing and separation logic,
we follow recent work on logical relations in Iris [KTB17; KSB17; Tim+18; FKB18;
Jun+18a; Jun+21], but apply it to non-interference instead of functional correctness
or contextual refinement.
Contributions. We introduce SeLoC, the first separation logic for non-interference
that combines typing and manual proof.

• We present a number of challenging examples that can be verified using SeLoC
(Section 5.2).

• SeLoC supports a language with fine-grained concurrency, higher-order
functions, and dynamic (higher-order) references (Section 5.3.1). SeLoC is
sound w.r.t. a standard timing-sensitive notion of non-interference—strong
low-bisimulations—by Sabelfeld and Sands [SS00] (Section 5.3.2).

• To verify challenging programs, SeLoC features a relational version of weakest
preconditions, which integrates seamlessly with the powerful mechanism for
invariants and protocols of the Iris framework (Section 5.4).

• Using the technique of logical relations, we build a type system on top of SeLoC.
By building a type system on top of separation logic, we can establish non-
interference of programs that consist of typed and untyped parts (Section 5.5).

• To compose proofs of program modules that cannot be type checked (because
their interface relies on functional correctness), we show how to express modu-
lar separation logic specifications for non-interfence in SeLoC (Section 5.6).

140

5.2. Motivating examples

• We prove soundness of SeLoC by constructing a bisimulation out of a separation
logic proof (Section 5.7).

• We have mechanized SeLoC, its type system, its soundness proof, and all
examples in the paper and appendix, in Coq (Section 5.8). The mechanization
can be found online at [FKB20a].

In Section 5.9 we discuss some more specialized topics and features of SeLoC, such
as absence of sensitivity labels on reference types and branching on high-sensitivity
data. In Section 5.11 we discuss related work and we conclude in Section 5.12.

5.2 Motivating examples

Before we proceed with the formal development of the paper in Section 5.3, we
present a number of challenging programs to demonstrate the expressivity of SeLoC.

5.2.1 Modularity and data structures

To guarantee non-interference, one should prove that high-sensitivity (i.e., confiden-
tial) information cannot leak via low-sensitivity (i.e., publicly observable) outputs.
Apart from such explicit leaks, one has to prove the absence of implicit leaks that
arise from the timing behavior of the program. To avoid timing leaks, Agat and Sands
[AS01] outlined the “worst-case principle”: a non-interfering algorithm operating on
high-sensitivity data should have the same best-case and worst-case execution time.
We apply this design principle to a set data structure that stores high-sensitivity ele-
ments. The implementation can be type checked using our approach, automatically
providing a proof of timing-sensitive non-interference.

To encapsulate the internal set representation, we first present the interface of our
data structure. This interface is given using closures (i.e., higher-order functions):1

val new_set : unit→

lookup : intH→ boolH;

insert : intH→ unit

The function new_set allocates an empty set, and returns a record with functions that
operate on the set. The function lookup takes a high-sensitivity integer—typed as
intH, where H refers to the high-sensitivity of the data— and returns a high-sensitivity
Boolean—typed as boolH—that signifies whether the argument is in the set or not.
The function insert takes a high-sensitivity integer, and adds it to the set.

Figure 5.1 shows an implementation of our set interface using a sorted dynamic
array2 store in the variable arr. To make the data structure thread-safe, the operations
are protected by the lock lk.

To implement the function lookup, we make use of binary search—but with a
twist to avoid timing leaks. An ordinary version of binary search would terminate
once it has found the element, making it possible to observe if the element is in the set

1When using modules or classes, the same kind of considerations apply.
2The full implementation, including the array operations, can be found in the Coq mechanization.

141

5. SeLoC: a logic for proving non-interference

let new_set () =

let k = ref(1) in

let arr = ref(new_array 1 None) in

let lk = newlock () in

lookup x = acquire lk;

let r = lookup_loop (!arr) (!k) 0 (cap (!k)) x false in

release lk; r

insert x = acquire lk;

insert_loop arr k 0 x;

release lk

let rec lookup_loop a k l r x is_found =

if k = 0 then is_found else

let i = (l + r)/2 in

let e = array_get a i in

let lr1 = (i + 1, r) in let lr2 = (l, i − 1) in

let (l, r) = if (e < x) then lr1 else lr2 in

lookup_loop a (k − 1) l r x (is_found ∨ (e = x))

let rec insert_loop arr k i x =

if i ≥ cap (!k)

then k← !k + 1;

resize_array arr (cap (!k));

array_set !arr i x

else match array_get !arr i with

| None→ array_set !arr i x
| Some(v)→ let xv = (x,v) in let vx = (v,x) in

let (p1,p2) = if (x ≤ v) then xv else vx in

array_set !arr i p1;

insert_lookup arr k (i + 1) p2

Figure 5.1: Implementation of a set using the “worst-case principle”.

via timing. Our implementation ensures that lookup takes the same time regardless
of whether the element is in the set. To achieve that, we represent the set using an
array whose size n satisfies cap(k) = n, for some k:

cap(0) = 0 cap(k + 1) = 1 + 2 · cap(k)

142

5.2. Motivating examples

This guarantees that the array can be recursively partitioned into two sub-arrays of
the same size and a pivot element in the middle. If the number of actual elements in
the set is less than cap(k), the array is padded with a dummy element.3

If at some iteration of lookup_loop we find that the element x is present in the
array, we make note of that fact but still continue with the recursion until the array is
no longer splittable. Thus, the function lookup is always executed with k levels of
recursion for an array of size cap(k). In the implementation of lookup_loop we pass
the parameter k and decrease it on every recursive call.

The function insert traverses the whole array and is thus always executed with
cap(k) levels of recursion. If the array is full, then it is dynamically resized to the size
cap(k + 1). In summary, both lookup and insert operations employ a low-sensitivity
termination condition.

We use our type system (described in Section 5.5) to type check the implementa-
tion against the interface. Of special note here is the type checking of the if branching.
In the implementation of lookup_loop and insert_loop we branch on high-sensitivity
data. Notably, in lookup_loop we compare the argument x with the pivot e (both
are high-sensitivity integers), and descend into one of the partitions of the array
depending on this comparison. Branching on high-sensitivity data is not secure in
general, but in this case the branching is secure. This is because both branches simply
return variables (lr1 and lr2), i.e., they do not perform any computations, and thus do
not leak information about the high-sensitivity condition via timing.4

5.2.2 Typing via manual proof

The example in the previous section made use of various operations on arrays:
array_make, array_get, and array_set. When reasoning about the set data struc-
ture, we assumed that these array operations are safe and secure, i.e., when one tries
to access an out-of-bounds index, array_get returns a dummy element, instead of
reading arbitrary memory.

The programming language that we consider does not have safe arrays as a
primitive construct. Instead, safe arrays are implemented as a library: an array is
stored together with its length, and the unsafe operations are protected by dynamic
checks. Naturally, such operations cannot be type checked in an ML-style type system,
because their safety and security depends on functional correctness. However, one of
the core features of our approach is that such functions can be assigned types through
a manual separation logic proof in SeLoC. Such a manual proof takes functional
properties (e.g., that the index is within the array bounds) into account. Once we
manually verify that the array library satisfies the desired typing, we can compose
it with the type checked example from the previous section to obtain a library that
guarantees safety and non-interference for its clients.5

3For comparisons < and equality = checks we assume that the dummy element None is the greatest
element and that it is not equal to any actual element in the array, which are of the form Some(x).

4In a low-level language like C the branching can be written using arithmetic.
5The proof of the array library and its integration in the type checking of the set data structure can be

found in the Coq mechanization.

143

5. SeLoC: a logic for proving non-interference

let rec thread1 out r = (if ¬ !r.is_classified
then out← !r.data else ());

thread1 out r
let thread2 r = r.data← 0;

r.is_classified← false

let prog out secret = let r =
{

data = ref(secret);
is_classified = ref(true)

}
in (thread1 out r) || (thread2 r)

Figure 5.2: Lock-free value-dependent classification.

The combination of typing and manual proof is important for compositionality
and scalability: challenging library code whose security relies on functional correct-
ness (such as the library for safe arrays) can be manually verified using separation
logic, and then used to automatically type check other libraries (such as the set data
structure).

5.2.3 Fine-grained concurrency

As shown in Section 5.2.2, the ability to fall back to a manual proof is useful to
assign types to code that uses operations such as array indexing whose safety and
security relies on functional correctness. This ability becomes even more pertinent
for (fine-grained) concurrent programs, where the safety and security can depend on
specific protocols on data that is shared between threads.

To demonstrate the application to concurrency, we consider the program prog in
Figure 5.2, which is a lock-free version of a similar lock-based program in [EM19].
The program runs two threads in parallel, both of which operate on a reference r.data.
The data in this reference has a value-dependent classification: the value of the flag
r.is_classified determines the sensitivity of r.data. If the flag r.is_classified is set to
false, then the data stored in r.data is classified with low-sensitivity, and if it is set
to true, the the data is classified with high-sensitivity. The record r initially contains
high-sensitivity data from the integer variable secret. The first thread thread1 checks
if the record r is classified (i.e., the flag r.is_classified is true), and if it is not, it leaks
the data r.data to an attacker-observable channel out. The second thread thread2
overwrites the data stored in r and resets the classification flag.

Due to the precise interplay of the two threads, the program prog is secure, in
the sense that it does not leak the data secret onto the public channel out. Since our
example does not use locks, there are more possible interleavings than in the original
example in [EM19], and consequently there are more things that could potentially go
wrong in thread1:

1. the data r.data can still be classified even if the bit r.is_classified is set to false;

144

5.2. Motivating examples

2. the classification of the data stored in r might change between reading the field
is_classified and reading the actual data from the field data.

Notice that if we replace the second thread by the expression below, where the two
operations in thread2 have been swapped, then we would violate the first condition:

let thread2bad r = r.is_classified← false; r.data← 0

To verify that both of these situations cannot occur, we have to establish a protocol
on accessing the record r. The protocol should ensure that at the moment of reading
r.is_classified the data r.data has the correct classification (ruling out situation 1).
The protocol should also ensure a form of monotonicity: whenever the classification
becomes low (i.e., r.is_classified becomes false), r.data is not going to contain high-
sensitivity data for the rest of the program (ruling out situation 2).

The security of thread1, and the whole program, depends on the specific protocol
attached to the record r and that the protocol is followed by all the components that
operate on it. In particular, for this example the security depends on the fact that
classification only changes in a monotone way. We outline the proof of safety and
security of this example in Section 5.4.4.

5.2.4 Higher-order functions and dynamic references

As shown in this section, higher-order functions are useful for modularity—they
can be used to model interfaces. However, since they can operate on encapsulated
state, they are difficult to reason about. Fortunately, SeLoC’s protocol mechanism
is also applicable to proving non-interference of functions with encapsulated state.
Consider the program awk, a variation of the “awkward example” of Pitts and Stark
[PS98]:

let awk v = let x = ref(v) in λf . x← 1;f (); !x

When applied to a value v, the program awk returns a closure that, when invoked,
always returns low-sensitivity data from the reference x, even if the original value v
has high-sensitivity. Intuitively, awk v returns a closure that does not leak any data,
even if the original value v passed to awk had high-sensitivity. The lack of leaks
crucially relies on the following facts:

• the reference x is allocated in, and remains local to, the closure, it cannot be
accessed without invoking the closure;

• the reference x can be updated only in a monotone way: once the original value
v gets overwritten with 1, the reference x never holds a high-sensitivity value
again.

To see why second condition is important, consider awkbad, which violates the mono-
tonicity, and is thus not secure:

let awkbad v = let x = ref(v) in λf . x← v;x← 1;f (); !x

Let h = awkbad v for a high-sensitivity value v. Now, when running h (λx. fork {h(id)}),
an attacker could influence the scheduler so that the first dereference !x happens just
after the assignment x← v in the forked-off thread, causing v to leak.

145

5. SeLoC: a logic for proving non-interference

Pitts and Stark studied the “awkward example” to motivate the difficulties of
reasoning about higher-order functions and state. They were interested in contextual
equivalence, but as we can see, similar considerations apply to non-interference.

5.3 Preliminaries

In this section we describe the programming language that we consider in this
paper (Section 5.3.1), and the non-interference property that SeLoC establishes
(Section 5.3.2).

5.3.1 Object language semantics

SeLoC is defined over the programming language HeapLang, which we described
in Chapter 2. We briefly recall the syntax and semantics of HeapLang. It is an an
ML-like with higher-order mutable references, recursion, and fork-based concurrency.
Its values and expressions are:

v ∈Val ::= rec f x = e | (v1,v2) | true | false | . . .
e, t ∈Expr ::= x | rec f x = e | e1(e2) | fork {e}

| ref(e) | !e | e1← e2 | CAS(e1, e2, e3) | . . .

We omit the usual operations on pairs, sums, and integers. The atomic compare-and-
set operation CAS(e1, e2, e3) checks if the value stored at the location e1 is equal to e2,
and, if so, sets the value at e1 to e3. The fork {e} construct creates a new thread, which
will execute the expression e. The construct rec f x = e is a recursive λ-function,
whose body e can refer to the function f itself and the argument x.

We use the following syntactic sugar: (λx. e) , (rec _ x = e), (let x = e1 in e2) ,
((λx. e2) e1), and (e1;e2), (let _ = e1 in e2), where we use _ as an anonymous binder,
in place of a variable name. HeapLang has no primitive syntax for records, so they
are modeled using pairs. Arrays are omitted in the paper, but they are present in the
Coq mechanization.

HeapLang features dynamic thread creation, so we can implement the parallel
composition operation using fork:

let rec join x = match !x with Some(v)→ v

| None→ join x

let par(f1, f2) = let x = ref(None) in

fork {x← Some(f1())}
let v2 = f2() in (join x,v2)

e1 || e2 , par(λ_. e1,λ_. e2)

The operational semantics of HeapLang is split into three reduction relations:
thread-local head reduction −→h, thread-local reduction −→t, and thread-pool reduction
−→tp. The thread-local head reduction is of the form (e1,σ1) −→h (e2,σ2), where ei is an

146

5.3. Preliminaries

expression, and σi is a heap, i.e., a finite map from locations to values (State, Loc fin−−⇀
Val).

The thread-local head reduction is lifted to the thread-local reduction using
call-by-value evaluation contexts:

K ∈ ECtx ::= [•] | K(v2) | e1(K) | if K then e1 else e2 | . . .

The thread-local reduction is of the form (e1,σ1) −→t (~e2,σ2). The second component
contains a list ~e2 of expressions to accommodate forked-off threads as in step-fork:

step-lift

(e1,σ1) −→h (e2,σ2)

(K[e1],σ1) −→t (K[e2],σ2)

step-fork

~e = K[()] e

(K[fork {e}],σ) −→t (~e,σ)

The thread-pool reduction −→tp is defined by lifting the thread-local reduction
to configurations (~e,σ). Here, ~e contains all threads, including values for the threads
that have terminated. In the definition of −→tp we non-deterministically select an
expression to take a thread-local step:

(ei ,σ1) −→t (e′i~e,σ2)

(e0 . . . ei . . . en,σ1) −→tp (e0 . . . e
′
i . . . en~e,σ2)

5.3.2 Strong low-bisimulations

To state the soundness theorem of SeLoC in Section 5.4.3, we adapt a timing-sensitive
notion of non-interference for concurrent programs known as strong low-simulations
on configurations by Sabelfeld and Sands [SS00]. To define this notion, we first fix
a set L ⊆ Loc of output locations, which we assume to be low-sensitivity observable
locations. For simplicity, we require these locations to contain integers.

Definition 5.1. Heaps σ1 and σ2 are low-equivalent for output locations L ⊆ Loc, de-
noted as σ1 ∼L σ2, if they are defined and agree on all the L-locations, i.e.,

∀` ∈ L. (σ1(`) = σ2(`))∧ (σ1(`) ,⊥)∧ σ1(`) ∈ Z.

Definition 5.2. A a strong low-bisimulation is a partial equivalence (i.e., symmetric
and transitive) relation R on configurations such that:

1. If (v~e,σ1)R (w~t,σ2), then v = w;

2. If (~e,σ1)R (~t,σ2), then |~e| = |~t| and σ1 ∼L σ2;

3. If (e0 . . . ei . . . en,σ1)R (t0 . . . ti . . . tn,σ2) and (ei ,σ1) −→t (e′i~e,σ
′
1), then there exist t′i ,

~t, and σ ′2 such that:

• (ti ,σ2) −→t (t′i~t,σ
′
2);

• (e0 . . . e
′
i . . . en~e,σ

′
1)R (t0 . . . t′i . . . tn~t,σ

′
2).

Notice that the first expression in the thread-pool is the main thread. The first
condition in Definition 5.2 thus states that the return values of the main-thread
should agree.

147

5. SeLoC: a logic for proving non-interference

To model the input/high-sensitivity data we use free variables. For simplicity
we assume that the input data consists of integers. We then arrive at the following
top-level definition of security.

Definition 5.3 (Security). An expression e with free variables ~x is secure if for any
heap σ with σ ∼L σ , and any sequences of integers ~i, ~j with |~i| = |~j | = |~x|, there exists a
strong low-bisimulation R such that (e[~i/~x],σ)R (e[~j/~x],σ).

5.3.3 Non-determinism and non-interference

The semantics presented in Section 5.3.1 is deterministic on the thread-local level,
but we can still account for non-determinism arising from a scheduler. Consider the
program rand, which uses intrinsic non-determinism of the thread-pool semantics to
return either true or false:

let rand () = let x = ref(true) in fork {x← false} ; !x

This program is secure w.r.t. Definition 5.3 (we will prove this in Section 5.4 using
SeLoC).

It is worth pointing out that if we modify the program and insert an additional
assignment of a high-sensitivity value h to x, then the resulting program is not secure:

let randbad () = let x = ref(true) in

fork {x← h} ; fork {x← false} ; !x

The program is not secure because an attacker can pick a scheduler that always
executes the leaking assignment, or, even simpler, can run the program many times
under the uniform scheduler. Because the program is not secure, we cannot prove it
in SeLoC. In SeLoC, we would verify each thread separately, and we would not be able
to verify the forked-off thread x← h (precisely because it makes the non-determinism
of assignments to the reference x dangerous).

5.4 Overview of SeLoC

We provide an overview of SeLoC by presenting its proof rules for relational reason-
ing (Section 5.4.1), its invariant mechanism (Section 5.4.2), its soundness theorem
(Section 5.4.3), and finally its protocol mechanism (Section 5.4.4), which we apply to
the verification of the program prog from Section 5.2.3. The grammar of SeLoC is:

P ,Q ∈ iProp ::= True | False | ∀x. P | ∃x. P | P ∗Q
| P −∗Q | ` 7→θ v | awpθ e {Φ} (θ ∈ {L,R})
| dwpE e1 & e2 {Φ}

| P N | .P | �P | |VE1 E2 P | . . .

SeLoC features the standard separation logic connectives like separating conjunction
(∗) and magic wand (−∗). Since SeLoC is based on Iris [Jun+15; Jun+16; Kre+17;

148

5.4. Overview of SeLoC

Jun+18b], it incorporates all the Iris connectives and modalities, in particular the
later modality (.) for dealing with recursion, the persistence modality (�) for dealing

with shareable resources, and the invariant connective (P
N

) and the update modality
(|VE1 E2) for establishing and relying on protocols. We will not introduce the Iris
connectives in detail, but rather explain them on a by-need basis. An interested
reader is referred to [Jun+18b; BB20] for further details. Various connectives are
annotated with name spacesN ∈ InvName and invariant masks E ⊆ InvName to handle
some bookkeeping. When the mask is omitted, it is assumed to be >, the largest
mask. We let |VE denote |VE E . Readers who are unfamiliar with Iris can safely ignore
the name spaces and invariant masks.

A selection of proof rules of SeLoC is given in Figure 5.3. Each inference rule
P1 . . . Pn
Q

in this paper should be read as an entailment P1∗. . .∗Pn `Q. In the subsequent

sections we explain and motivate the rules of SeLoC.

5.4.1 Relational reasoning

The quintessential connective of SeLoC is the double weakest
precondition dwpE e1 & e2 {Φ}. Intuitively, it expresses that any two runs of e1
and e2 are related in a lock-step bisimulation-like way, and that the resulting values
of any two terminating runs are related by the postcondition Φ : Val→Val→ iProp.
We refer to e1 (resp. e2) as the left-hand side (resp. the right-hand side). The double
weakest precondition is defined such that if

∀~i ~j ∈ Z. dwp e[~i/~x] & e[~j/~x] {v1 v2. v1 = v2}

is derivable (with ~x the free variables of e), then e is secure. We defer the precise
soundness statement to Section 5.4.3.

A selection of rules for double weakest preconditions6 are given in Figure 5.3.
Some of these rules are generalizations of the ordinary weakest precondition rules
(e.g., dwp-val, dwp-wand, dwp-fupd, dwp-bind). The more interesting rules are the
symbolic execution rules, which allow executing the programs on both sides in a lock-
step fashion. If both sides involve a pure-redex, we can use dwp-pure. The premises
e→pure e

′ denote that e deterministically reduces to e′ without any side-effects (e.g.,
(if true then e else t)→pure e). If both sides involve a fork, we can use the rule dwp-

fork, which is a generalization of Iris’s fork rule to the relational case. To explain
SeLoC’s rules for symbolic execution of heap-manipulating expressions, we need to
introduce some additional machinery:

• Due to SeLoC’s relational nature, there are left- and right-hand side versions of
the points-to connectives ` 7→θ v, where θ ∈ {L,R}, which denote that the value
v of location ` in the heap associated with the left-hand side program and the
right-hand side program, resp.

6Some of the SeLoC rules involve the later modality ., which is standard for dealing with recursion and
impredicative invariants [Jun+18b, Section 5.5]. The occurrences of . can be ignored for the purposes of
this paper.

149

5. SeLoC: a logic for proving non-interference

dwp-val

Φ(v1,v2)

dwpE v1 & v2 {Φ}

dwp-wand

dwpE e1 & e2 {Ψ } (∀v1 v2.Ψ (v1,v2) −∗ Φ(v1,v2))

dwpE e1 & e2 {Φ}

dwp-fupd

|VE dwpE e1 & e2 {v1 v2. |VEΦ(v1,v2)}
dwpE e1 & e2 {Φ}

dwp-bind

dwpE e1 & e2

{
v1 v2. dwpE K1[v1] &K2[v2] {Φ}

}
dwpE K1[e1] &K2[e2] {Φ}

dwp-pure

e1→pure e
′
1 e2→pure e

′
2 .dwpE e

′
1 & e′2 {Φ}

dwpE e1 & e2 {Φ}

dwp-fork

.dwp e1 & e2 {True} .Φ((), ())

dwpE (fork {e1}) & (fork {e2}) {Φ}

dwp-awp

awpL e1 {Ψ1} awpR e2 {Ψ2} (∀v1,v2. (Ψ1(v1) ∗Ψ2(v2)) −∗ .Φ(v1,v2))

dwpE e1 & e2 {Φ}

awp-store

` 7→θ v1 (` 7→θ v2 −∗ Φ())

awpθ `← v2 {Φ}

awp-load

` 7→θ v (` 7→θ v −∗ Φ(v))

awpθ !` {Φ}

awp-alloc

∀`. ` 7→θ v −∗ Φ(`)

awpθ ref(v) {Φ}

dwp-inv-alloc

P (P
N −∗ dwp e1 & e2 {Φ})

dwp e1 & e2 {Φ}

inv-dup

P
N

P
N ∗ P N

dwp-inv

atomic(e1) atomic(e2) N ∈ E
P
N

(.P −∗ dwpE\N ↑ e1 & e2 {v1 v2. P ∗Φ(v1,v2)})

dwpE e1 & e2 {Φ}

Figure 5.3: A selection of the proof rules of SeLoC.

150

5.4. Overview of SeLoC

• To avoid a quadratic explosion in combinations of all possible heap-
manipulating expressions on the left- and the right-hand side, SeLoC includes a
unary weakest precondition. awpθ e {Φ} for atomic and fork-free expressions.7

The rules for unary weakest preconditions (e.g., awp-store, awp-load, awp-alloc)
are similar to those of Iris, but each rule is parameterized by a side θ ∈ {L,R}.

The rule dwp-awp connects dwp and awpθ . For instance, using dwp-awp, awp-store,
and awp-load, we can derive:

`1 7→L v1 `2 7→R v2 (`1 7→L v1 ∗ `2 7→R v
′
2) −∗ dwp v1 & () {Φ}

dwp !`1 & (`2← v′2) {Φ}

5.4.2 Invariants

Let us demonstrate, by means of an example, how to use the symbolic execution rules
together with the powerful invariant mechanism of Iris. Recall the rand example
from Section 5.3.3. We can use invariants to prove the following:

Proposition 5.4. dwp rand () & rand () {v1 v2. v1 = v2}.

Proof. First we use dwp-pure to symbolically execute a β-reduction. We then use
dwp-bind to “focus” on the ref(true) subexpression, leaving us with the goal:

dwp ref(true) & ref(true) {Φ}
where Φ(`1, `2), dwp let x = `1 in . . . &

let x = `2 in . . . {v1 v2. v1 = v2}

We then symbolically execute the allocation, using dwp-awp and awp-alloc, obtaining
`1 7→L true and `2 7→R true:

`1 7→L true ∗ `2 7→R true

` dwp fork {`1← false} ; !`1 &
fork {`2← false} ; !`2 {v1 v2. v1 = v2}

It is tempting to use dwp-fork; but in both the main thread and the forked-off
thread we need `1 7→L − and `2 7→R − to symbolically execute the dereference and
assignment to `1 and `2. To share the points-to connectives between both threads, we
put them into an Iris-style invariant.

Iris-style invariants are logical propositions denoted as P
N

, which express that
P holds at all times. Unlike in other logics, Iris-style invariants are not attached to
locks. Rather, one can explicitly open an invariant during an atomic step of execution
to get access to its contents. To create a new invariant we use the dwp-inv-alloc rule,

which transfers P into the an invariant P
N

with a name space N ∈ InvName. The
transfer of P into an invariant makes it possible to share P between different threads

7For an atomic expression e, the proposition awpθ e {Φ} is essentially equivalent to wp∅ e {Φ}, but
defined for the ` 7→θ v points-to connectives instead of the untagged ` 7→ v.

151

5. SeLoC: a logic for proving non-interference

(using inv-dup). To access an invariant we use the rule dwp-inv. It allow us to open an
invariant during an atomic symbolic execution step. The masks E ⊆ InvName on dwp
are used to keep track of which invariants have been open. This is done to prevent
invariant reentrancy.

Returning to our example, we can use dwp-inv-alloc to allocate the invariant

I , ∃b ∈ B. `1 7→L b ∗ `2 7→R b
N

. This invariant not only allows different threads to
access `1 and `2 (via inv-dup), but it also ensures that `1 and `2 contain the same
Boolean value throughout the execution.

The proof then proceeds as follows. We apply dwp-fork and get two new goals:
1. I ` dwp `1← false & `2← false {True};
2. I ` dwp !`1 & !`2 {v1 v2. v1 = v2}.

The invariant I can be used for proving both goals (inv-dup). The first goal involves
proving that the assignment of false to `1 and `2 is secure. We verify this via dwp-inv,
and temporarily opening the invariant I to obtain `1 7→L b and `2 7→R b. We then
apply dwp-awp, and symbolically execute the assignment to obtain `1 7→L false and
`2 7→R false. At the end of this atomic step, we verify that the invariant I still holds.

The second goal is solved in a similar way. When we dereference `1 and `2 we
know that they contain the same value because of the invariant I .

5.4.3 Soundness

We now state SeLoC’s soundness theorem, which guarantees that verified programs
are actually secure w.r.t. Definition 5.3.

As we have described in Section 5.3.2, we fix a set L of output locations that we
assume to be observable by the attacker. We require these locations to always contain
the same data in both runs of the program. To reflect this in the logic, we use an
invariant that owns the observable locations and forces them to contain the same
values in both heaps:

IL , ∗̀
∈L
∃i ∈ Z. ` 7→L i ∗ ` 7→R i

N .(`,`)

When we verify a program under the invariant IL, we are forced to interact with the
locations in L as if they are permanently publicly observable. With this in mind we
state the soundness theorem, which we prove in Section 5.7.

Theorem 5.5 (Soundness). Suppose that:

IL ` ∀~i,~j ∈ Z. dwp e[~i/~x] & e[~j/~x] {v1 v2. v1 = v2}

is derivable, where ~x are the free variables of e, and ~i and ~j are lists of integers with
|~i| = |~j | = |~x|, then:

• the expression e is secure, and,

• the configuration (e[~i/~x],σ) is safe (i.e., cannot get stuck) for any list of integers
~i, and any heap σ with σ ∼L σ .

152

5.4. Overview of SeLoC

5.4.4 Protocols

Now that we have seen the basics of Iris-style invariants in SeLoC, let us use the pro-
tocol mechanism SeLoC inherits from Iris to verify the example prog from Figure 5.2.
We prove the following proposition, which serves as a premise for Theorem 5.5, and
therefore implies the security of prog.

Proposition 5.6. For any integers i1, i2 ∈ Z, we have

I{out} ` dwp prog out i1 & prog out i2 {v1 v2. v1 = v2 = ((), ())}.

Proof. We first need a derived rule for parallel composition (which we defined in
terms of fork in Section 5.3.1). The parallel composition operation satisfies a binary
version of the standard specification in Concurrent Separation Logic [OHe07]:
dwp-par

dwp e1 & t1 {Ψ1} dwp e2 & t2 {Ψ2}
(
∀v1,v2,w1,w2. (Ψ1(v1,w1) ∗Ψ2(v2,w2)) −∗

Φ((v1,w1), (v2,w2))
)

dwp (e1 || e2) & (t1 || t2) {Φ}

Second, we need to establish a protocol on the way the values in the record r may
evolve. We identify three logical states State, {Classified, Intermediate,Declassified}
the record r can be in; visualized in Figure 5.4a:

1. Classified, if the data stored in the record is classified, and r.is_classified points
to true;

2. Intermediate, when the data stored in the record is not classified anymore, but
r.is_classified still points to true;

3. Declassified, when the data stored in the record is not classified and
r.is_classified points to false. This state is final in the sense that once
the state of the record becomes Declassified, it forever remains so.

The idea behind the proof is as follows: we use an invariant to track the logical state
together with the points-to connectives for the physical state of the record. This way,
we ensure that the protocol is followed by both threads.

To model the protocol in SeLoC, we use Iris’s mechanism for user-defined ghost
state. The exact way this mechanism works is described in [Jun+15; Jun+18b],
but is not important for this paper. What is important is that via this mechanism
we can define predicates in_stateγ ,state_tokenγ : State → iProp that satisfy the
rules in Figure 5.4b. The predicate in_stateγ will be shared using an invariant,
while thread2 will own the predicate state_tokenγ . Rule state-agree states that the
predicates in_stateγ and state_tokenγ agree on the logical state. If a thread owns
both predicates, it can change the logical state using state-change, but only in a way
that respects the transition system. Rule declassified-dup states that once a thread
learns that the record is in the final state, i.e., Declassified, this knowledge remains
true forever. The predicates are indexed by a ghost name γ to allow for different
instances of the transition system using state-alloc. Figure 5.4c displays the invariant
that ties together the ghost and physical state. It is defined for the records r1 and
r2 on the left- and the right-hand side, resp. We verify each thread separately with
respect to this invariant, which we open every time we access the record.

153

5. SeLoC: a logic for proving non-interference

Classified Intermediate Declassified

(a) The protocol as a transition system.

state-alloc

|VE ∃γ. in_stateγ (Classified) ∗ state_tokenγ (Classified)

state-agree

in_stateγ (s1) state_tokenγ (s2)

s1 = s2

state-change

s1 s2 in_stateγ (s1) state_tokenγ (s1)

|VE in_stateγ (s2) ∗ state_tokenγ (s2)

declassified-dup

state_tokenγ (Declassified)

state_tokenγ (Declassified) ∗ state_tokenγ (Declassified)

(b) The rules for ghost state.

(
in_stateγ (Classified) ∗ ∃i1, i2. r1.is_classified 7→L true ∗ r2.is_classified 7→R true ∗

r1.data 7→L i1 ∗ r2.data 7→R i2
)

∨
(
in_stateγ (Intermediate) ∗ ∃i. r1.is_classified 7→L true ∗ r2.is_classified 7→R true ∗

r1.data 7→L i ∗ r2.data 7→R i
)

∨
(
in_stateγ (Declassified) ∗ ∃i. r1.is_classified 7→L false ∗ r2.is_classified 7→R false ∗

r1.data 7→L i ∗ r2.data 7→R i
)

N

(c) The invariant.

Figure 5.4: Value-dependent classification.

154

5.5. Type system and logical relations

Proof of the complete program. We symbolically execute the allocation of the
records r1 and r2, giving us the resources r1.is_classified 7→L true, r2.is_classified 7→R true,
r1.data 7→L i1, and r2.data 7→R i2. We then use state-alloc to obtain in_stateγ (Classified)
and state_tokenγ (Classified). With these resources at hand, we use dwp-inv-alloc to
establish the invariant in Figure 5.4c, which can be shared between both threads.
We use dwp-par with Ψ1(v1,v2) , Ψ2(v1,v2) , (v1 = v2 = ()), and use the token
state_tokenγ (Classified) for the proof of the second thread.

Proof of thread1. We use the symbolic execution rules for dereferencing
r1.is_classified and r2.is_classified until both of them become false. At that point, the
invariant tells us that we are in the Declassified state. Subsequently, when using
the symbolic execution rule for dereferencing r1.data and r2.data, we use a copy
of the predicate state_tokenγ (Declassified) to determine that the last disjunct of
the invariant must hold. From that, we know that both r1.data and r2.data contain
the same value. Using this information we can safely symbolically execute the
assignments to the output location out.

Proof of thread2. We start the proof with the initial predicate
state_tokenγ (Classified) and update the logical state with each assignment. The
complete formalized proof can be found in the Coq mechanization.

5.5 Type system and logical relations

We show how to define a type system for non-interference as an abstraction on
top of SeLoC using the technique of logical relations. While logical relations have
been used to model type systems and logics for safety and contextual refinement in
(variants of) Iris before [KTB17; KSB17; Tim+18; FKB18; Jun+18a; Jun+21], we—for
the first time—use logical relations in Iris to model a type system for non-interference
(Section 5.5.1). We moreover show how we can combine type-checked code with
code that has been manually verified using double weakest preconditions in SeLoC
(Section 5.5.2).

The types that we consider are as follows:

τ ∈ Type ::= unit | intχ | boolχ | τ × τ ′ | ref τ | (τ→ τ ′)χ

Here, χ,ξ ∈ Lbl range over the sensitivity labels {L,H} that form a lattice with L vH.
While any bounded lattice will do, we use the two-element lattice for brevity’s sake.

The typing judgment is of the form Γ ` e : τ , where Γ is an assignment of variables
to types, e is an expression, and τ is a type. The typing rules are given in Figure 5.5.
The rule typed-out shows that every output location ` ∈ L is typed as a reference to
a low-sensitivity integer. By τ t ξ we denote the level stamping function, defined as
follows:

unitt ξ , unit (τ × τ ′)t ξ , (τ t ξ)× (τ ′ t ξ)

intχ t ξ , intχtξ (ref τ)t ξ , ref τ

boolχ t ξ , boolχtξ (τ→ τ ′)χ t ξ , (τ→ τ ′)χtξ

155

5. SeLoC: a logic for proving non-interference

χ1 v χ2

intχ1 <: intχ2

χ1 v χ2

boolχ1 <: boolχ2

τ1 <: τ ′1 τ2 <: τ ′2
τ1 × τ2 <: τ ′1 × τ

′
2

χ1 v χ2 τ ′1 <: τ1 τ2 <: τ ′2
(τ1→ τ2)χ1 <: (τ ′1→ τ ′2)χ2

τ <: τ

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

(a) Subtyping rules.

unit is flat

intχ is flat

boolχ is flat

τ1 is flat τ2 is flat

τ1 × τ2 is flat

(b) Flat types.

typed-sub

τ <: τ ′ Γ ` e : τ

Γ ` e : τ ′

typed-var

Γ (x) = τ

Γ ` x : τ

typed-out

` ∈ L
Γ ` ` : ref intL

typed-unit

Γ ` () : unit

typed-int

i ∈ Z
Γ ` i : intχ

typed-bool

b ∈ B
Γ ` b : boolχ

typed-binop

Γ ` e : intχ Γ ` t : intξ

Γ ` e+ t : intχtξ

typed-rec

f : (τ→ τ ′)χ,x : τ,Γ ` e : τ ′ tχ
Γ ` rec f x = e : (τ→ τ ′)χ

typed-app

Γ ` e : (τ→ τ ′)χ Γ ` t : τ

Γ ` e t : τ ′ tχ

typed-if-low

Γ ` e : boolL Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ

typed-if-high

Γ ` e : boolH Γ ` v : τ Γ ` w : τ
v, w are values or variables in Γ τ is flat

Γ ` if e then v else w : τ tH

typed-fork

Γ ` e : τ

Γ ` fork {e} : unit

typed-alloc

Γ ` e : τ

Γ ` ref(e) : ref τ

typed-deref

Γ ` e : ref τ

Γ ` !e : τ

typed-store

Γ ` e1 : ref τ Γ ` e2 : τ

Γ ` e1← e2 : unit

typed-cas

Γ ` e1 : ref τ Γ ` e2 : τ Γ ` e3 : τ τ is unboxed

Γ ` CAS(e1, e2, e3) : boollbl(τ)

(c) Selected expression typing rules.

Figure 5.5: Typing judgements of the SeLoC type system.

156

5.5. Type system and logical relations

JunitK(v1,v2), v1 = v2 = ()

JintχK(v1,v2), v1,v2 ∈ Z ∗ (χ = L→ v1 = v2)

JboolχK(v1,v2), v1,v2 ∈ B ∗ (χ = L→ v1 = v2)

Jτ × τ ′K(v1,v2), ∃w1,w2,w
′
1,w

′
2. (v1 = (w1,w

′
1)) ∗ (v2 = (w2,w

′
2)) ∗

JτK(w1,w2) ∗ Jτ ′K(w′1,w
′
2)

Jref τK(v1,v2), v1,v2 ∈ Loc ∗ ∃w1w2. v1 7→L w1 ∗ v2 7→R w2 ∗ JτK(w1,w2)
N .(v1,v2)

J(τ→ τ ′)χK(v1,v2), �
(
∀w1,w2. JτK(w1,w2) −∗ Jτ ′ tχKE (v1 w1)(v2 w2)

)
JτKE (e1, e2), dwp e1 & e2 {JτK}

Figure 5.6: The logical relations interpretation of types.

By lbl(τ) we denote the level approximation of a type, defined as follows:

lbl(unit), L lbl(τ × τ ′), lbl(τ)t lbl(τ ′)

lbl(intχ), χ lbl(ref τ), L

lbl(boolχ), χ lbl((τ→ τ ′)χ), χ

Intuitively, if we compare two values of type τ , then the result of the comparison
should have the sensitivity level lbl(τ).

To type check the set data structure from Section 5.2, we need to support benign
branching on high-sensitivity Booleans. For that purpose we use the rule typed-if-high.
In the rule, both branches should either be values or variables, ensuring that they
do not perform any computations. In addition, both branches should be of a flat
type—intH, boolH, or a product of two flat types. Function types are not flat because
they can leak via timing behavior outside the if branch itself.

The atomic compare-and-swap operation is well-defined only for unboxed types:
intχ,boolχ,unit,ref τ . The intuition behind this is that unboxed types contain word-
sized values, c.f. unboxed from Section 4.2.

Notice that our type system has no sensitivity labels on reference types, and
no program counter label on the typing judgment. While such labels are common
in security type systems for languages with (higher-order) references [PS03; Ter08;
RG18; Zda02], a direct adaptation of such type systems is not sound with respect to
the termination-sensitive notion of non-interference we consider. A counterexample
is provided in Section 5.9.1.

5.5.1 Logical relations model

We give a semantic model of our type system using logical relations. The key idea
of logical relations is to interpret each type τ as a relation on values, i.e., to each
type τ we assign an interpretation JτK : Val ×Val→ iProp where iProp is the type of

157

5. SeLoC: a logic for proving non-interference

logrel-if-low

dwp e1 & e2

{
JboolLK

}
dwp t1 & t2 {Φ} dwp u1 & u2 {Φ}

dwp if e1 then t1 else u1 & if e2 then t2 else u2 {Φ}

logrel-if-high

dwp e1 & e2

{
JboolHK

}
dwp v1 & v2 {JτK} dwp w1 &w2 {JτK} τ is flat

dwp if e1 then v1 else w1 & if e2 then v2 else w2 {JτK}

logrel-store

dwp e1 & e2 {Jref τK} dwp t1 & t2 {JτK}
dwp (e1← t1) & (e2← t2) {JunitK}

logrel-sub

dwp e1 & e2 {JτK} τ <: τ ′

dwp e1 & e2
{
Jτ ′K

}
Figure 5.7: A selection of compatibility rules.

SeLoC propositions. Intuitively, JτK(v1,v2) expresses that v1 and v2 of type τ are
indistinguishable by a low-sensitivity attacker. The definition of JτK is given in
Figure 5.6. We will now explain some interesting cases in detail.

The interpretation JintLK contains the pairs of equal integers, while JintHK contains
the pairs of any two integers. This captures the intuition that a low-sensitivity attacker
can observe low-sensitivity integers, but not high-sensitivity integers.

The interpretation Jref τK captures that references `1 and `2 are indistinguishable
iff they always hold values w1 and w2 that are indistinguishable at type τ . This
is formalized by imposing an invariant that contains both points-to propositions
`1 7→L w1 and `2 7→R w2, as well as the interpretation of τ that links the values w1
and w2. Notice that our interpretation of references does not require the locations
`1 and `2 themselves to be syntactically equal. This is crucial for modeling dynamic
allocation (recall that the allocation oracle described in Section 5.3.1 may depend on
the contents of the heap).

The interpretation J(τ → τ ′)χK captures that functions v1 and v2 are indistin-
guishable iff for all inputs w1 and w2 indistinguishable at type τ , the behaviors of
the expressions v1 w1 and v2 w2 are indistinguishable at type τ ′ tχ. To formalize
what it means for the behavior of expressions (in this case v1 w1 and v2 w2) to be
indistinguishable, we define the expression interpretation JτKE : Expr×Expr→ iProp
by lifting the value interpretation using double weakest preconditions.

The interpretation of functions is defined using the persistence modality � of
Iris [Jun+18b, Section 2.3]. Intuitively, �P states that P holds without asserting
ownership of any non-shareable resources. Having the persistence modality in this
definition is common in logical relations in Iris [KTB17]—it ensures that indistin-
guishable functions remain indistinguishable forever.

The interpretation of expressions J_KE generalizes to open terms by considering
all well-typed substitutions. A (binary) substitution γ is a functionVar→Val×Val.
We write γi(e) for a term e where each free variable x is substituted by πi(γ(x)).
A substitution γ is well-typed, notation JΓ K(γ), iff ∀x. JτK(γ(Γ (x))). We define the

158

5.5. Type system and logical relations

semantic typing judgment as:

Γ |= e : τ , ∀γ. (JΓ K(γ) ∗ IL) −∗ JτKE (γ1(e),γ2(e)).

Here, IL is the invariant on the observable locations (Section 5.4.3).

Theorem 5.7 (Soundness). If x1 : intH, . . . ,xn : intH |= e : intL is a derivable in SeLoC,
then e is secure, and the configuration (e[~i/~x],σ) is safe (i.e., cannot get stuck) for any
list of integers ~i, and any heap σ with σ ∼L σ .

Proof. This a direct consequence of Theorem 5.5.

The fundamental property of logical relations states that any program that can be
type checked is semantically typed.

Proposition 5.8 (Fundamental property). If Γ ` e : τ , then Γ |= e : τ is derivable in
SeLoC.

Proof. This proposition is proved by induction on the typing judgment Γ ` e : τ using
so-called compatibility rules for each case. A selection of these rules is shown in
Figure 5.7.

5.5.2 Typing via manual proof

When composing the fundamental property (Proposition 5.8) and the soundness
theorem (Theorem 5.7) we obtain that any typed program is secure. For instance,
it allows us to show that the rand program is secure by type checking it, instead of
performing a manual proof as done in Proposition 5.4.

However, semantic typing gives us more—it allows us to combine type-checked
code with manually verified code. Let us consider the examples from Section 5.2,
which are not typed according to the typing rules, but which we can prove to be
semantically typed by dropping down to the interpretation of the semantic typing
judgment in terms of double weakest preconditions.

Proposition 5.9. |= prog : ref intL→ intH→ unit×unit.

Proof. This is a direct consequence of Proposition 5.6.

Proposition 5.10. |= awk : intH→ (unit→ unit)L→ intL.

Proof. The proposition boils down to showing that for any i1, i2 ∈ Z and f1, f2 with
J(unit → unit)LK(f1, f2), we have dwp awk i1 f1 & awk i2 f2 {v1 v2. v1 = v2 = 0}. We
verify this by establishing a monotone protocol similar to the one used in the proof
of value-dependent classification in Section 5.4.2. The full proof can be found in the
Coq mechanization.

159

5. SeLoC: a logic for proving non-interference

After establishing the semantic typing for, e.g., prog we can use it in any context
where a function of the type ref intL→ intH→ unit×unit is expected. For example:

h : intH, f : ref intL→ intH→ unit×unit

` let x = ref(0) in fork {f x h} ; !x : intL

Using the fundamental property (Proposition 5.8) we obtain a semantic typing
judgment for the above program. Using Proposition 5.9 we establish that if we
substitute prog for f , the resulting program will still be semantically typed, and thus
secure by the soundness theorem (Theorem 5.7).

The same methodology can be used to assign the types to the safe array operations
from Section 5.2.2 via manual proof, and compose them with the type checked set
data structure from Section 5.2.1. The proof can be found in the Coq mechanization.

5.6 Modular separation logic specifications

Types provide a convenient way to specify program modules, but are not always
strong enough to enable the verification of sophisticated clients. This is particularly
relevant if the specification of a program module is to be used in a manual proof or
relies on function correctness. We show that in addition to specifications through
types, SeLoC can also be used to prove modular specification in separation logic.
We demonstrate this approach on dynamically created locks (Section 5.6.1) and
dynamically classified references (Section 5.6.2).

5.6.1 Locks

The HeapLang language we consider does not provide locks as primitive constructs,
but provides the low-level compare-and-set (CAS) operation with which different
locking mechanisms can be implemented. Figure 5.8 displays the implementation and
specification of a spin lock. The specification makes use of a relational generalization
of the common lock predicates in separation logic [Din+10; SB14]. The predicate
isLock(lk1, lk2,R) expresses that the pair of locks lk1 and lk2 protect the resources R,
and the predicate locked(lk1, lk2) expresses that the pair of locks is in acquired state.

To verify that the spin lock implementation conforms to the lock specification,
we define the lock predicates using Iris’s mechanism for invariants and user-defined
ghost state. The proof (and invariant) are generalizations of the ordinary proof (and
invariant) for functional correctness in Iris.

The rules of our lock specification are similar to the rules in logics with locks as
primitives constructs, such as [MSE18; EM19]. There are two notable exceptions.
First, in loc. cit. one needs to fix the set of locks and associated resources upfront,
whereas in SeLoC one can create locks dynamically and attach an arbitrary resource
R to each lock during the proof. Second, since locks are not primitive constructs in
SeLoC, the specification also applies to different lock implementations, e.g., a ticket
lock, as we have shown in the Coq mechanization.

160

5.6. Modular separation logic specifications

Implementation of a spin lock

let newlock () = ref(false)

let rec acquire lk = if CAS(lk, false,true) then ()
else acquire lk

let release lk = lk← false

Modular separation logic specification of locks

newlock-spec

R

dwp newlock () & newlock () {lk1 lk2. isLock(lk1, lk2,R)}

islock-dup

isLock(lk1, lk2,R)

isLock(lk1, lk2,R) ∗ isLock(lk1, lk2,R)

acquire-spec

isLock(lk1, lk2,R)

dwp acquire lk1 & acquire lk2 {R ∗ locked(lk1, lk2)}

release-spec

isLock(lk1, lk2,R) R locked(lk1, lk2)

dwp release lk1 & release lk2 {True}

Figure 5.8: Dynamically allocated locks in SeLoC.

5.6.2 Dynamically classified references

We consider a program module that encapsulates and generalizes dynamically classi-
fied references8 as used in Section 5.2.3. This program module generalizes to clients
with multiple threads and different sharing models. For example, clients in which
multiple threads read and write to the dynamically classified reference, or in which
the data gets classified again. The Coq mechanization contains such an example.
The implementation of the module for dynamically classified references is given in
Figure 5.9, and its specification9 is given in Figure 5.9.

The main ingredient of the specification is the representation predicate
val_dep(τ, r1, r2), which expresses that the dynamically classified references r1
and r2 contain related data of type τ at all times. Since val_dep(τ, r1, r2) expresses
mere knowledge instead of ownership, it is duplicable (valdep-dup). With the repre-

8In this context declassification refers to changing the dynamic classification of the reference. It is
thus unrelated to static declassification policies [SS09], and the declassify function is unrelated to the
eponymous function from [SM03].

9The specification in Figure 5.9 is derived from a more general HOCAP-style logically atomic specifi-
cations [SBP13], which can be found in Section 5.10 and the Coq mechanization.

161

5. SeLoC: a logic for proving non-interference

let new_vdep v =
{

data = ref(v);
is_classified = ref(false)

}
let read r = ! r.data

let store r v = r.data← v

let classify r = r.is_classified← true

let get_classified r = ! r.is_classified
let declassify r v = r.data← v;r.is_classified← false

Figure 5.9: Implementation of dynamically classified references.

sentation predicate at hand we can formulate weak specifications for some operations.
For instance, the rule read-safe over-approximates the sensitivity-level of the values
returned by the read operation, and dually, the rule store-safe under-approximates
the sensitivity-level of the values stored using the store operation. Of course, at
times we want to track the precise sensitivity-level. For that we use a fractional token
class(r1,r2)(χ,q) with q ∈ (0,1]Q. This token is reminiscent of fractional permissions
in separation logic. The proof rules for declassify and classify (declassify-seq and
classify-seq) require the full fraction (q = 1) since they change the classification.
The precise rules for read and store (read-seq and store-seq) do not change the
classification, and thus require an arbitrary fraction. The token is splittable according
to class-split so it can be shared between threads.

Since the rules for declassify and classify require a full fraction (q = 1), they do
not allow for fine-grained sharing,10 i.e., they cannot be used to verify a program that
runs declassify in parallel with classify. It is good that this is impossible—running
these operations in parallel results in a race-condition, making it impossible to know
what the final classification would be. However, it is possible to verify a program
that runs declassify in parallel with read or store (using precise rules for these two
operations) by sharing the token via an invariant. To access such a shared token one
has to use the more general HOCAP-style logically atomic specifications found in
Section 5.10 and the Coq mechanization.

Proof. In order to verify the implementation, we follow the usual approach of defin-
ing the representation predicate val_dep(τ, r1, r2) and token class(r1,r2)(χ,q) using
Iris’s invariant and protocol mechanism. The invariant expresses that, at all times,
the fields is_classified of both records contain the same Boolean value b, and that the
data in the records are related by Jτ tχK. The relation between the Boolean values
b and the security label χ, and the way it evolves, are expressed using a protocol
visualized as the transition system in Figure 5.11.

10We can still achieve sharing by storing the token class(r1,r2)(χ,1) in a lock, as outlined in Section 5.6.1.

162

5.6. Modular separation logic specifications

new-vdep

Jτ tχK(v1,v2)

dwp new_vdep v1 & new_vdep v2

{
r1 r2. val_dep(τ, r1, r2) ∗ class(r1,r2)(χ,1)

}
valdep-dup

val_dep(τ, r1, r2) ` val_dep(τ, r1, r2) ∗ val_dep(τ, r1, r2)

class-split

class(r1,r2)(χ,q1) ∗ class(r1,r2)(χ,q2) a` class(r1,r2)(χ,q1 + q2)

read-safe

val_dep(τ, r1, r2)

dwp read r1 & read r2 {v1 v2. Jτ tHK(v1,v2)}

read-seq

val_dep(τ, r1, r2) class(r1,r2)(χ,q)

dwp read r1 & read r2
{
v1 v2. Jτ tχK(v1,v2) ∗ class(r1,r2)(χ,q)

}
store-safe

val_dep(τ, r1, r2) JτK(v1,v2)

dwp store r1 v1 & store r2 v2 {True}

store-seq

val_dep(τ, r1, r2) class(r1,r2)(χ,q) Jτ tχK(v1,v2)

dwp store r1 v1 & store r2 v2

{
class(r1,r2)(χ,q)

}
classify-seq

val_dep(τ, r1, r2) class(r1,r2)(χ,1)

dwp classify r1 & classify r2
{
class(r1,r2)(H,1)

}
declassify-seq

val_dep(τ, r1, r2) class(r1,r2)(χ,1) JτK(v1,v2)

dwp declassify r1 v1 & declassify r2 v2

{
class(r1,r2)(L,1)

}
get-classified-seq

val_dep(τ, r1, r2) class(r1,r2)(χ,q)

dwp get_classified r1 & get_classified r2 {b1 b2. (b1 = b2) ∗Φ(b1,χ,q)}

where Φ(b,χ,q), class(r1,r2)(χ,q) ∗ ((b = false)→ (χ = L))

Figure 5.10: Modular specifications of dynamically classified references.

163

5. SeLoC: a logic for proving non-interference

Classified (b = false, χ = H) Intermediate (b = true, χ = L)

Declassified (b = true, χ = L)

Figure 5.11: State transition system for dynamically classified references.

dwpE e1 & e2 {Φ},

|VEΦ(e1, e2) if e1, e2 ∈Val

|VE False if e1 ∈Val xor e2 ∈Val

∀σ1σ2. SR(σ1,σ2) −∗ |VE ∅ red(e1,σ1) ∗ red(e2,σ2) ∗

∀e′1σ
′
1 ~e1 e

′
2σ
′
2 ~e2. (e1,σ1) −→t (e′1 ~e1,σ

′
1)∧ (e2,σ2) −→t (e′2 ~e2,σ

′
2) −∗

|V∅ ∅ . |V∅ E SR(σ ′1,σ
′
2) ∗dwpE e

′
1 & e′2 {Φ} ∗

∗(e′′1 ,e
′′
2)∈~e1×~e2 .dwp e′′1 & e′′2 {True}

otherwise

Figure 5.12: The model of double weakest preconditions.

5.7 Soundness

To prove soundness of SeLoC (Theorem 5.7), we give a model of double weakest
preconditions in Iris (Section 5.7.1), and then construct a bisimulation out of this
model (Section 5.7.2).

5.7.1 Model of double weakest preconditions

The model of the Iris logic [Kre+17; Jun+18b] consists of three layers:
• The Iris base logic, which contains the standard separation logic connectives

(e.g., ∗ and −∗), modalities (e.g., ., �), and the machinery for user-defined ghost
state.

• The invariant mechanism, which is built as a library on top of the Iris base
logic.

• The Iris program logic, which is built as a library on top of the Iris base logic
and invariant mechanism. It provides weakest preconditions for proving safety
and functional correctness of concurrent programs.

We reuse the first two layers of Iris (the base logic and the invariant mechanism), on
top of which we model our new notion of double weakest preconditions. This model
is inspired by the model of ordinary (unary) weakest preconditions in Iris and the
product program construction [BCK11]. The definition of dwp e1 & e2 {Φ} is given in
Figure 5.12. Intuitively, it captures that the expressions e1 and e2 are executed in
lock-step. This is done by case analysis:

164

5.7. Soundness

• Either, both expressions e1 and e2 are values that are related by the postcondi-
tion Φ .

• Otherwise, both expressions e1 and e2 are reducible, and for any reductions
(e1,σ1) −→t (e′1,σ

′
1) and (e2,σ2) −→t (e′2,σ

′
2), the expressions e′1 and e′2 are still

related by dwp. If e1 and e2 fork off threads ~e′1 and ~e′2, then all of the forked-off
threads are related pairwise by dwp. Moreover, it is required that |~e′1| = |~e

′
2|; this

condition is implicit in the “big separating conjunction”∗(e′′1 ,e
′′
2)∈~e1×~e2 .

The definition of dwp e1 & e2 {Φ} is modeled after the definition of wp e {Φ} in Iris
[Jun+18b], but instead of Iris’s state interpretation S : State→ iProp, we have a state
relation SR : State×State→ iProp that keeps track of both the left and right-hand side
heaps. The details can be found in the Coq formalization.

5.7.2 Constructing a bisimulation

The main challenge of constructing a strong low-bisimulation lies in connecting
double weakest preconditions, at the level of separation logic, with strong-low bisim-
ulations, at the meta level. The construction is done as follows:

1. We define a relation R that “lifts” double weakest preconditions out of the
SeLoC logic into the meta-level (Definition 5.11).

2. We show that the dwp predicate is sound w.r.t. the relation R: we can go from
a proof of IL ` dwp e& t {v1 v2. v1 = v2} in SeLoC to (e,σ1)R (t,σ2) for σ1 ∼L σ2.
(Proposition 5.14).

3. We then show that the relation R satisfies a number of bisimulation-like prop-
erties (Lemma 5.15).

4. The relation R is not a bisimulation because it is not transitive. To fix this, we
take its transitive closure R∗, and verify that it is a strong-low bisimulation on
configurations (Theorem 5.16).

Definition 5.11. We define the relation R on configurations of the same size to be
the following:11

(e0e1 . . . em,σ1)R (t0t1 . . . tm,σ2), ∃n : N.

True `
(
|V> ∅ . |V∅ >)n |V>SR(σ1,σ2) ∗ IL ∗

dwp e0 & t0 {v1 v2. v1 = v2} ∗∗1≤i≤m . dwp ei & ti {True}

As was mentioned,R is defined at the meta-level, i.e., outside SeLoC; in particular
the existential quantifier ∃n : N is at the meta-level. The relation R relates two
configurations if all the threads are related by a double weakest precondition, and
execution of the main threads furthermore result in the same value. The invariant
IL (which has been defined in Section 5.4.3) guarantees that the output locations L

11The definition in Coq includes additional details for bootstrapping the ghost state in Iris. We omit
these details on paper, since in this thesis we do not talk about the ghost state implementation in Iris.

165

5. SeLoC: a logic for proving non-interference

always contain the same data between any executions of the two configurations. The
existentially quantified natural number n bounds the number of times the definition
of double weakest preconditions has been unfolded. It is needed to show that R is
closed under reductions.

The definition of R uses the iterated version of the modality |V> ∅ . |V∅ > . We will
need the following properties of this modality:12

Lemma 5.12. For any propositions P ,Q and n ∈ N, the following holds:

(P −∗Q) −∗
((
|V> ∅ . |V∅ >)n P) −∗ ((|V> ∅ . |V∅ >)nQ)

Lemma 5.13. If φ is a pure predicate φ (i.e., φ is built out of the intuitionistic logic
connectives only), and (

|V> ∅ . |V∅ >)n |V> ∅φ

is derivable, then φ holds in the meta-logic (c.f. Theorem 2.1).

The relation R allows one to “lift” double weakest precondition proofs from
inside the logic:

Proposition 5.14. If IL ` dwp e & t {v1 v2. v1 = v2} is derivable in SeLoC, then
(e,σ1)R (t,σ2) for any σ1 ∼L σ2.

Proof. For showing (e,σ1) R (t,σ2), pick n = 0. Because σ1 and σ2 agree on the
L-locations (i.e., σ1 ∼L σ2), we can establish the state relation SR(σ1,σ2) and the
invariant IL.

Lemma 5.15. The following properties hold:
1. R is symmetric;

2. If (v~e,σ1)R (w~t,σ2), then v = w;

3. If (~e,σ1)R (~t,σ2), then |~e| = |~t| and σ1 ∼L σ2;

4. If (e0 . . . ei . . . ,σ1)R (t0 . . . ti . . . ,σ2) and (ei ,σ1) −→t (e′i~e,σ
′
1), then there exist an t′i , ~t

and σ ′2 such that:

• (ti ,σ2) −→t (t′i~t,σ
′
2);

• (e0 . . . e
′
i~e . . . ,σ

′
1)R (t0 . . . t′i~t . . . ,σ

′
2).

Proof. The proof proceeds by unfolding the definitions of the R and dwp, appealing
to the soundness and monotonicity of the iterated |V> ∅ . |V∅ > modality. For item (4),
to establish that the configurations after a thread-level step are related, we pick a
witness n+ 1, where n is the witness extracted from the relatedness of the original
thread pools.

12This modality was first used in [Tim+18], under the name of “future modality”. The monotonicity
lemma and a version of the soundness lemma were then used by Tassarotti in the Iris Coq formalization
[Iri20] to prove the soundness of the weakest precondition in Iris.

166

5.8. Mechanization in Coq

By the above lemma, we now know that R has all the properties of a strong
low-bisimulation on configurations (c.f. [SS00, Definition 6]), short of being a partial
equivalence relation. Since R is not transitive, we consider its transitive closure R∗,
and verify that all the properties of a strong low-bisimulation hold for R∗.

Theorem 5.16. The relation R∗ is a strong low-bisimulation on configurations.

Proof. Because R is symmetric, R∗ is a partial equivalence relation. It remains to
verify that all the properties in Lemma 5.15 are preserved under the transitive
closure.

The theorem Theorem 5.16 in combination with Proposition 5.14 implies the
soundness of SeLoC (Theorem 5.7).

5.8 Mechanization in Coq

We have mechanized the definition of SeLoC, the type system, the soundness proof,
and all examples and derived constructions in the paper and the appendix in Coq.
The mechanization has been built on top of the mechanization of Iris [Jun+16; Kre+17;
Jun+18b], which readily provides the Iris base logic, the invariant mechanism, and
the HeapLang language.

To carry out the mechanization effectively, we have made extensive use of the
tactic language MoSeL (formerly Iris Proof Mode) for separation logic in Coq [KTB17;
Kre+18]. Using MoSeL we were able to carry out in Coq the typical kind of reasoning
steps one would do on paper. This was essential to mechanize the SeLoC logic (1818
line of Coq code), the type system (1355 lines), and all the examples (3223 lines).

5.9 Discussion

In this section we would like to discuss additional topics that are not necessary for the
overall understanding of the chapter. First, we discuss the absence of sensitivity labels
on reference types (Section 5.9.1). Secondly, we discuss the general rule for branching
on high-sensitivity data in SeLoC (Section 5.9.2). Finally, we present the general
form of modular specifications for references with value-dependent classifications
(Section 5.10).

5.9.1 Sensitivity labels on references and aliasing

Most type systems for non-interference for languages with (higher-order) references
annotate reference types with sensitivity labels, and annotate the typing judgment
with a program counter label [PS03; Ter08; RG18; Zda02]. These annotations are used
to prevent leaks via aliasing, while allowing more programs to be typed. Our type
system (Section 5.5) does not have such annotations because some programs that are
typeable using such annotations are not secure w.r.t. a termination-sensitive notion of

167

5. SeLoC: a logic for proving non-interference

non-interference (e.g., strong low-bisimulation). For example, termination-insensitive
type systems usually accept the following program as secure:

(if h then f else g) ()

Here, h is a high-sensitivity Boolean, and f and g are functions of type (unit→ unit)L.
Under a termination-sensitive notion of security, the program is not secure because f
and g can examine different termination behavior.

Despite this, let us examine why exactly we do not need labels on reference types
to prevent leaks via aliasing, and argue that our approach still allows for benign
aliasing of references. A classic example of an information leak via aliasing is:

let p1 r s h = r← true;s← true;

let x = (if h then r else s) in

x← false; !r

Both r and s contain low-sensitivity data, but by aliasing one or the other with x, the
program leaks the high-sensitivity value h. In previous approaches such leaks are
avoided by tracking aliasing information through sensitivity labels on references. The
variable x would be typed as (ref intL)H because it was aliased in a high-sensitivity
context (branching on h). The consequent assignment x← false is then prevented
by the type system since the label on the reference (H) is not a below the label of the
values that are stored in the reference (L).

In SeLoC, the variable x will not be typeable at all. To see why that is the case,
suppose we want to prove that the program is secure. For this, we let h1 and h2 denote
high-sensitivity inputs for two runs of the program, and r1, s1 (resp. r2, s2) denote the
low-sensitivity references arguments for the left-hand side program (resp. right-hand
side program). Under these high-sensitivity inputs, we need to prove that the bodies
of the let-expressions are indistinguishable, i.e.,

dwp if h1 then r1 else s1 & if h2 then r2 else s2
{
Jref intLK

}
Proving this proposition, would in particular require proving dwp r1 & s2

{
Jref intLK

}
,

which is impossible in SeLoC.
If we remove the trailing assignment x← false the resulting program p2 becomes

trivially secure, and many termination-insensitive type systems accept it as such:

let p2 r s h = r← true;s← true;

let x = (if h then r else s) in

!r

Our type system cannot be used to type check this example: as we have just explained,
we cannot type the let-expression at all. Despite this, we can fall back on the double
weakest preconditions to verify the security of p2, i.e., we can prove:

Jref boolLK(r1, r2) ∗ Jref boolLK(s1, s2) ∗
JboolHK(h1,h2) ` dwp p2 r1 s1 h1 & p2 r2 s2 h2 {JunitK}

168

5.9. Discussion

by symbolic execution. Using our logic, we can perform a case distinction on the
Boolean values h1 and h2, which amounts to proving

• dwp p2 r1 s1 true & p2 r2 s2 true {JunitK},
• dwp p2 r1 s1 true & p2 r2 s2 false {JunitK},
• etc.

We solve all these goals by symbolic execution. This example demonstrates the
advantages of combining typing with manual proofs.

We believe that the restriction on the typing of the let x-binding is not unreason-
able in case of termination-sensitive and progress-sensitive security condition. As we
have mentioned, if we take termination and timing behavior into account, the liberal
compositional reasoning that is enjoyed by termination-insensitive type systems is
no longer sound. In presence of higher-order functions and store, we can write the
counterexample from the beginning of this section in the form of p2 to obtain the
program p3 below:

let p3 f g h = r← f ;s← g;

let x = (if h then r else s) in

(!x)()

The variable x now aliases a reference to a function. If f and g exhibit different
termination behavior, then the value of h can be observed by invoking !x.

5.9.2 Generalized rule for branching

The notion of security that we use (strong low-bisimulation) allows for branching
on high-sensitivity data, provided that the timing behavior of the branches is indis-
tinguishable. However, if we branch on a high-sensitivity Boolean, it is insufficient
to verify that each individual branch is secure, we also have to verify that the two
different branches are indistinguishable for the attacker. This kind of condition is
present in the rule logrel-if:

logrel-if

dwp e1 & e2 {JboolχK}
dwp t1 & t2 {Φ} ∧dwp u1 & u2 {Φ} ∧ (χ @ L→ (dwp u1 & t2 {Φ} ∧dwp t1 & u2 {Φ}))

dwp (if e1 then t1 else u1) & (if e2 then t2 else u2) {Φ}

We can speak of two different branches being indistinguishable because we have
moved from a unary typing system to a binary logic.

Recall, that our inference rules are interpreted as an separating implication,
where the premises are joined together by a separating conjunction. To prove each
premise, the user of the rule has to distribute the resources they currently have among
the premises. The last four premises in logrel-if, however, are joined by a regular
intuitionistic conjunction (∧). The user still has to prove both of those premises if
they wish to apply the rule, but this time they do not have to split their resources, i.e.,
they are able to reuse the same resource to prove all the premises. This corresponds

169

5. SeLoC: a logic for proving non-interference

to the fact that there are four possible combinations of branches, but only one of the
combinations can actually occur.

This general rule logrel-if is used to derive the compatibility rules logrel-if-low

and logrel-if-high in Figure 5.7 in Section 5.5.

5.10 HOCAP-style modular specifications

We provide modular logically atomic specifications for the module of dynamically
classified references (Section 5.6.2) in Figure 5.13. These specifications are stronger
than the ones given in Figure 5.13 in the sense that they are logically atomic, i.e.,
they allow one to open invariants around operations. This is achieved using the
HOCAP [SBP13] approach to logical atomicity. Note that the weaker specifications in
Figure 5.10 (from Section 5.6.2) can be derived from the HOCAP-style specifications
in Figure 5.13.

5.11 Related work

5.11.1 Security based on strong low-bisimulations

The security condition we use, a strong low-bisimulation due to Sabelfeld and
Sands [SS00], has been studied in a variety of related work. In loc. cit. the no-
tion of a strong low-bisimulation is applied to a first-order stateful language with
concurrency. It is also shown that this notion implies a scheduler-independent bisim-
ulation known as ρ-specific probabilistic bisimulation. Sabelfeld and Sands presented
both strong low-bisimulation on thread pools and configurations. We use the bisimu-
lation relation on configurations because it allows for a flow-sensitive analysis and
readily supports dynamic allocation.

Strong low-bisimulations are highly compositional: if a thread e is secure w.r.t. a
strong low-bisimulation, then the composition of e with any other thread is secure.
Unfortunately, this property makes it non-trivial to adapt strong low-bisimulations
for analyses that are flow-sensitive in thread composition. We work around this
issue by composing the components at the level of the logic (as double weakest
preconditions), and not at the level of the bisimulations, despite the fact that we
use strong low-bisimulations as an auxiliary notion in our soundness proof. By
performing the composition at the level of the logic, we can use Iris invariants and
modular specifications to put restrictions onto which threads can be composed.

Another way of enabling flow-sensitive analysis was developed by Mantel
et al. [MSS11], who relaxed the notion of a strong low-bisimulation to a strong low-
bisimulation modulo modes. Their approach enables rely-guarantee style reasoning at
the level of the bisimulation. Notably, using the notion of strong low-bisimulations
modulo modes one can specify that no other threads can read or write to a certain
location.

Based on the notion of strong low-bisimulations modulo modes, the Covern
project [Mur+16; SM19; MSE18] developed a series of logics for rely/guarantee
reasoning. Notably, Murray et al. [MSE18] presented the first fully mechanized

170

5.11. Related work

valdep-persistent

val_dep(τ, r1, r2)

�val_dep(τ, r1, r2)

classification-agree

class(r1,r2)(χ1,q1) class(r1,r2)(χ2,q2)

χ1 = χ2

classification-op

class(r1,r2)(χ,q1) ∗ class(r1,r2)(χ,q2) a` class(r1,r2)(χ,q1 + q2)

classification-1-exclusive

class(r1,r2)(χ,1) class(r1,r2)(χ,q)

False

classification-auth-agreee

class_auth(r1,r2)(χ1) class(r1,r2)(χ2,q)

χ1 = χ2

classification-update

class_auth(r1,r2)(χ) class(r1,r2)(χ,1)

|Vclass_auth(r1,r2)(χ
′) ∗ class(r1,r2)(χ

′ ,1)

read-spec

val_dep(τ, r1, r2)
(∀χv1 v2. class_auth(r1,r2)(χ) ∗ Jτ tχK(v1,v2) class_auth(r1,r2)(χ) ∗Φ(v1,v2))

dwp read r1 & read r2 {Φ}

write-spec

val_dep(τ, r1, r2)
(∀χ. class_auth(r1,r2)(χ) class_auth(r1,r2)(χ) ∗ Jτ tχK(v1,v2) ∗Φ((), ()))

dwp store r1 v1 & store r2 v2 {Φ}

is-classified-spec

val_dep(τ, r1, r2)
(∀χb. class_auth(r1,r2)(χ) class_auth(r1,r2)(χ) ∗ ((b = false→ χ = L) −∗ Φ(b,b)))

dwp get_classified r1 & get_classified r2 {Φ}

declassify-spec

val_dep(τ, r1, r2) class(r1,r2)(χ,q)
(class_auth(r1,r2)(χ) ∗ class(r1,r2)(χ,q) class_auth(r1,r2)(L) ∗ class(r1,r2)(L,q) ∗

(class(r1,r2)(L,q) −∗ Φ((), ())))

dwp declassify r1 v1 & declassify r2 v2 {Φ}

classify-spec

val_dep(τ, r1, r2) class(r1,r2)(χ,q)
(class_auth(r1,r2)(χ) ∗ class(r1,r2)(χ,q) class_auth(r1,r2)(H) ∗Φ((), ())

dwp classify r1 & classify r2 {Φ}

new-vdep-spec

Jτ tχK(v1,v2) (∀r1 r2. val_dep(τ, r1, r2) ∗ class(r1,r2)(χ,1) −∗ Φ(r1, r2))

dwp new_vdep v1 & new_vdep v2 {Φ}

Figure 5.13: HOCAP-style specifications for dynamically classified references.

171

5. SeLoC: a logic for proving non-interference

program logic for non-interference of concurrent programs with shared memory,
which is also called Covern. While Covern is not a separation logic, it has been
extended to allow for flexible reasoning about non-interference in presence of value-
dependent classifications [Mur+16]. In terms of the object language, Covern does not
support fine-grained concurrency, arrays, or dynamically allocated references. Since
Covern does not support fine-grained concurrency, locks are modeled as primitives
in the language and logic, while they are derived constructs in our work. As a
result of that, Covern’s notion of strong low-bisimulations is tied to the operational
semantics of locks, i.e., it is considered modulo the variables that are held by locks.
The set of locks, and the variables they protect, has to be provided statically. Hence
their approach does not immediately generalize to support dynamically allocated
locks, nor to reason about locks that protect other resources than permissions to
write to or read from variables. Value-dependent classifications are also primitive
in Covern [Mur+16], while they are derived constructs in our work. Covern has two
separate primitive rules for assignment to “normal” variables and for assignment to
“control” variables (i.e., variables that signify the classification levels).

5.11.2 Program logics for non-interference

Early work by Beringer and Hofmann [BH07] established a connection between Hoare
logic and non-interference. They did so for a first-order sequential language with
a simple non-interference condition. Non-interference was encoded through self-
composition and renaming, making sure that both parts of the composed program
operate on different parts of the heap (something that one gets by construction in
separation logic). Notably, they proved the non-interference property of two type
systems by constructing models of the type systems in their Hoare logic. They also
showed how to extend their approach to object-oriented type systems.

5.11.3 Separation logics for non-interference

Karbyshev et al. [Kar+18] devised a compositional type-and-effect system based on
separation logic to prove non-interference of concurrent programs with channels.
Their system is sound w.r.t. termination-insensitive non-interference allowing for
races on low-sensitivity locations. They consider security for arbitrary (deterministic)
schedulers, and allow for a rescheduling operation in the programming language
to prevent scheduler tainting. To achieve that, their logical rule for rescheduling
treats the scheduler as a splittable separation logic resource, allowing one to share
it between threads. In terms of the object language, they consider a first-order
language without dynamic memory allocation, and the concurrency primitives are
based on channels with send and receive operations rather than our low-level fine-
grained concurrency model. They do not provide a logic for modular reasoning about
program modules.

The recently proposed separation logic SecCSL [EM19] enables reasoning about
value-dependent information flow control policies through a relational interpretation
of separation logic. One of the main advantages of the SecCSL approach is its
amenability to automation. However, to achieve that, they restrict to a first-order

172

5.11. Related work

separation logic with restricted language features, i.e., a first-order language with
first-order references, and a coarse-grained synchronization mechanism. SecCSL does
not support dynamically allocated references out of the box. However, we believe
that it can be extended to support dynamic allocation, as long as the semantics for
allocation are deterministic and do not depend on the global heap.

The security condition in SecCSL [EM19] is non-standard, and is geared to pro-
viding meaning to the intermediate Hoare triples. Because of that, their formulation
of non-interference is closely intertwined with the semantics of the logic.

Costanzo and Shao [CS14] devised a separation logic for proving non-interference
of first-order sequential programs. One of the novelties of their system is the support
for declassification in the form of delimited release [SM03]. While we do not study
declassification policies in this paper, we believe that the approach of Costanzo and
Shao can be adapted to our setting, provided that we are willing to relax the notion
of a strong low-bisimulation.

5.11.4 Type systems for non-interference

As discussed in the introduction (Section 5.1), a lot of work on non-interference in
the programming languages area has focused on type-system based approaches. Such
approaches are amendable to high degrees of automation, but lack the ability to
reason about functional correctness. Due to an abundance of prior work on in this
area, we restrict to directly related work.

Pottier and Simonet developed Flow Caml [PS03], a type system for termination-
insensitive non-interference for sequential higher-order language in the spirit of Caml.
Soundness w.r.t. non-interference is proven with the product programs technique.
This kind of self-composition was an inspiration for our model of double weakest
preconditions, although we avoid self-composition of programs at the syntactic level.

Terauchi [Ter08] devised a capabilities-based type system for observational deter-
minism [ZM03]. Observational determinism is a formulation of non-interference for
concurrent programs that is substantially different from the strong low-bisimulation
considered in this paper. In particular, under observational determinism, no races
on low-sensitivity locations are allowed, ruling out e.g., the rand function from
Section 5.3.3.

5.11.5 Logical relation models

The technique of logical relations is widely used for proving the soundness of type
systems and logics. The work on step-indexing [Ahm06; App+07] made it possible to
scale logical relations to languages with higher-order references and recursive types.
Notably, Rajani and Garg [RG18] describe a step-indexed Kripke-style model for two
information flow aware type systems for a sequential language with higher-order ref-
erences. While they do not consider concurrency and their notion of non-interference
is different from ours (their notion is termination- and progress-insensitive), their
model is similar in spirit. However, we make use of the “logical” approach to step-
indexing [DAB09] in Iris to avoid explicit step-indexes in definitions and proofs.

173

5. SeLoC: a logic for proving non-interference

The relational model of our type system is directly inspired by a line of work on
interpretation of type systems and logical relations in Iris [KTB17; KSB17; Jun+18a;
Jun+21; Tim+18; FKB18], but this previous work focused on reasoning about safety
and contextual equivalence of programs, while we target non-interference. For that
purpose we developed double weakest preconditions.

The idea of using logical relations to reason about the combination of typed and
manually verified code has been used before in the context of Iris. Jung et al. [Jun+18a;
Jun+21] use it to reason about unsafe code in Rust, and Krogh-Jespersen et al. [KSB17]
use it in the context of type-and-effect systems.

5.12 Conclusions and future work

We have presented SeLoC—the first separation logic for non-interference that com-
bines type checking and manual proof. It supports fine-grained concurrency, higher-
order functions, and dynamic (higher-order) references. The key feature of SeLoC is
its novel connective for double weakest preconditions, which in combination with
Iris-style invariants, allows for compositional reasoning. We have proved soundness
of SeLoC with respect to a standard notion of security.

In future work we want to develop a more expressive type system. To develop
such a type system, we want to transfer back reasoning principles from SeLoC
into constructs that can be type checked automatically. Moreover, we would like
to study declassification in the sense of delimited information release and static
declassification policies [SS09; SM03; BNR07; CS14].

174

Bibliography

[AAV02] Amal Ahmed, Andrew W. Appel, and Roberto Virga. “A Stratified
Semantics of General References Embeddable in Higher-order Logic”.
In: LICS. 2002, pp. 75–86. doi: 10.1109/LICS.2002.1029818.

[AB08] Amal Ahmed and Matthias Blume. “Typed Closure Conversion Pre-
serves Observational Equivalence”. In: ICFP. 2008, pp. 157–168. doi:
10.1145/1411204.1411227.

[ADR09] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. “State-dependent
representation independence”. In: POPL. 2009, pp. 340–353. doi: 10.
1145/1480881.1480925.

[Agu+19] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg,
and Pierre-Yves Strub. “A relational logic for higher-order pro-
grams”. In: Journal of Functional Programming 29 (2019), e16. doi:
10.1017/S0956796819000145.

[Ahm04] Amal Ahmed. “Semantics of types for mutable state”. PhD thesis. Prince-
ton University, 2004.

[Ahm06] Amal Ahmed. “Step-indexed syntactic logical relations for recursive
and quantified types”. In: ESOP. Vol. 3924. LNCS. 2006, pp. 69–83. doi:
10.1007/11693024_6.

[AL91] Martín Abadi and Leslie Lamport. “The existence of refinement map-
pings”. In: Theoretical Computer Science 82.2 (1991), pp. 253–284. doi:
10.1016/0304-3975(91)90224-P.

[AM01] Andrew W. Appel and David McAllester. “An indexed model of re-
cursive types for foundational proof-carrying code”. In: TOPLAS 23.5
(2001), pp. 657–683. doi: 10.1145/504709.504712.

[Ami+07] Daphna Amit, Noam Rinetzky, Thomas Reps, Mooly Sagiv, and Eran
Yahav. “Comparison under Abstraction for Verifying Linearizability”.
In: CAV. Vol. 4590. LNCS. 2007, pp. 477–490. doi: 10.1007/978-3-
540-73368-3_49.

[App+07] Andrew W. Appel, Paul-André Melliès, Christopher Richards, and
Jérôme Vouillon. “A very modal model of a modern, major, general type
system”. In: POPL. 2007, pp. 109–122. doi: 10.1145/1190216.1190235.

[App14] Andrew W. Appel. Program Logics for Certified Compilers. Cambridge
University Press, 2014.

[AS01] Johan Agat and David Sands. “On Confidentiality and Algorithms”. In:
S&P. 2001, pp. 64–77. doi: 10.1109/SECPRI.2001.924288.

175

https://doi.org/10.1109/LICS.2002.1029818
https://doi.org/10.1145/1411204.1411227
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1017/S0956796819000145
https://doi.org/10.1007/11693024_6
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/504709.504712
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1109/SECPRI.2001.924288

Bibliography

[Bar+12] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella
Béguelin. “Probabilistic Relational Reasoning for Differential Privacy”.
In: POPL. 2012, pp. 97–110. doi: 10.1145/2103656.2103670.

[Bar+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. “Easycrypt: A tutorial”. In:
FOSAD. Vol. 8604. LNCS. 2013, pp. 146–166. doi: 10.1007/978-3-319-
10082-1_6.

[Bat+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
“Mathematizing C++ concurrency”. In: POPL. 2011, pp. 55–66. doi:
10.1145/1926385.1926394.

[BB20] Lars Birkedal and Aleš Bizjak. Lecture Notes on Iris: Higher-Order Con-
current Separation Logic. 2020. url: https://iris- project.org/
tutorial-material.html.

[BBS13] Lars Birkedal, Aleš Bizjak, and Jan Schwinghammer. “Step-Indexed Re-
lational Reasoning for Countable Nondeterminism”. In: Logical Methods
in Computer Science 9.4 (2013). doi: 10.2168/LMCS-9(4:4)2013.

[BBT07] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. “BI-hyperdoctrines,
higher-order separation logic, and abstraction”. In: TOPLAS 29.5 (2007),
p. 24. doi: 10.1145/1275497.1275499.

[BCK11] Gilles Barthe, Juan Manuel Crespo, and César Kunz. “Relational Ver-
ification Using Product Programs”. In: FM. Vol. 6664. LNCS. 2011,
pp. 200–214. doi: 10.1007/978-3-642-21437-0_17.

[BCO05] Josh Berdine, Cristiano Calcagno, and Peter O’Hearn. “Symbolic Execu-
tion with Separation Logic”. In: APLAS. Vol. 3780. LNCS. 2005, pp. 52–
68. doi: 10.1007/11575467_5.

[Ben04] Nick Benton. “Simple relational correctness proofs for static analyses
and program transformations”. In: POPL. 2004, pp. 14–25. doi: 10.
1145/964001.964003.

[Ber+08] Josh Berdine, Tal Lev-Ami, Roman Manevich, Ganesan Ramalingam,
and Mooly Sagiv. “Thread Quantification for Concurrent Shape Analy-
sis”. In: CAV. Vol. 5123. LNCS. 2008, pp. 399–413. doi: 10.1007/978-
3-540-70545-1_37.

[BGZ09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. “For-
mal Certification of Code-Based Cryptographic Proofs”. In: POPL. 2009,
pp. 90–101. doi: 10.1145/1480881.1480894.

[BH07] Lennart Beringer and Martin Hofmann. “Secure Information Flow and
Program Logics”. In: CSF. 2007, pp. 233–248. doi: 10.1109/CSF.2007.
30.

[BH18] Callum Bannister and Peter Höfner. “False Failure: Creating Failure
Models for Separation Logic”. In: RAMiCS. Vol. 11194. LNCS. 2018,
pp. 263–279. doi: 10.1007/978-3-030-02149-8_16.

176

https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1145/1926385.1926394
https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html
https://doi.org/10.2168/LMCS-9(4:4)2013
https://doi.org/10.1145/1275497.1275499
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/11575467_5
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1007/978-3-540-70545-1_37
https://doi.org/10.1007/978-3-540-70545-1_37
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1109/CSF.2007.30
https://doi.org/10.1109/CSF.2007.30
https://doi.org/10.1007/978-3-030-02149-8_16

Bibliography

[BHK18] Callum Bannister, Peter Höfner, and Gerwin Klein. “Backwards and
Forwards with Separation Logic”. In: ITP. Vol. 10895. LNCS. 2018,
pp. 68–87. doi: 10.1007/978-3-319-94821-8_5.

[Bir+11] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring,
Jacob Thamsborg, and Hongseok Yang. “Step-indexed Kripke models
over recursive worlds”. In: POPL. 2011, pp. 119–132. doi: 10.1145/
1926385.1926401.

[Biz+19] Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. “Iron:
managing obligations in higher-order concurrent separation logic”. In:
Proc. ACM Program. Lang. 3.POPL (2019), 65:1–65:30. doi: 10.1145/
3290378.

[BNN16] Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. “Rela-
tional logic with framing and hypotheses”. In: FSTTCS. Vol. 65. LIPIcs.
2016, 11:1–11:16. doi: 10.4230/LIPIcs.FSTTCS.2016.11.

[BNR07] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. “Towards
a Logical Account of Declassification”. In: PLAS. 2007, pp. 61–66. doi:
10.1145/1255329.1255340.

[BNR13] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. “Local
reasoning for global invariants, part I: Region logic”. In: JACM 60.3
(2013), 18:1–18:56. doi: 10.1145/2485982.

[BO16] Stephen Brookes and Peter O’Hearn. “Concurrent separation logic”. In:
ACM SIGLOG News 3.3 (2016), pp. 47–65.

[Bor+05] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew
Parkinson. “Permission accounting in separation logic”. In: POPL. ACM,
2005, pp. 259–270. doi: 10.1145/1040305.1040327.

[Boy03] John Boyland. “Checking Interference with Fractional Permissions”. In:
SAS. Vol. 2694. LNCS. 2003, pp. 55–72. doi: 10.1007/3-540-44898-
5_4.

[Bro07] Stephen Brookes. “A Semantics for Concurrent Separation Logic”. In:
TCS 375.1-3 (2007), pp. 227–270. doi: 10.1016/j.tcs.2006.12.034.

[BST12] Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. “A Concurrent
Logical Relation”. In: CSL. Vol. 16. LIPIcs. 2012, pp. 107–121. doi:
10.4230/LIPIcs.CSL.2012.107.

[Bur+10] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.
“Line-up: A Complete and Automatic Linearizability Checker”. In: PLDI.
2010, pp. 330–340. doi: 10.1145/1806596.1806634.

[Cal+11] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok
Yang. “Compositional Shape Analysis by Means of Bi-Abduction”. In: J.
ACM 58.6 (2011), 26:1–26:66. doi: 10.1145/2049697.2049700.

177

https://doi.org/10.1007/978-3-319-94821-8_5
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/3290378
https://doi.org/10.1145/3290378
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.11
https://doi.org/10.1145/1255329.1255340
https://doi.org/10.1145/2485982
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1145/2049697.2049700

Bibliography

[Cao+18] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and
Andrew W. Appel. “VST-Floyd: A Separation Logic Tool to Verify Cor-
rectness of C Programs”. In: JAR 61.1-4 (2018), pp. 367–422. doi: 10.
1007/s10817-018-9457-5.

[Čer+10] Pavol Černý, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri,
and Rajeev Alur. “Model Checking of Linearizability of Concurrent List
Implementations”. In: CAV. Vol. 6174. LNCS. 2010, pp. 465–479. doi:
10.1007/978-3-642-14295-6_41.

[Cha+19] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-
dovich. “Verifying Concurrent, Crash-Safe Systems with Perennial”. In:
SOSP. 2019, pp. 243–258. doi: 10.1145/3341301.3359632.

[Cha11] Arthur Charguéraud. “Characteristic formulae for the verification of
imperative programs”. In: ICFP. ACM, 2011, pp. 418–430. doi: 10.1145/
2034773.2034828.

[Cha20] Arthur Charguéraud. Separation Logic for Sequential Programs (Func-
tional Pearl). To appear in ICFP’20. 2020.

[Çiç+17] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoff-
mann. “Relational Cost Analysis”. In: POPL. 2017, pp. 316–329. doi:
10.1145/3009837.3009858.

[Coh+09a] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
“VCC: A Practical System for Verifying Concurrent C”. In: TPHOLs.
Vol. 5674. LNCS. 2009, pp. 23–42. doi: 10.1007/978-3-642-03359-
9_2.

[Coh+09b] Ernie Cohen, Michał Moskal, Stephan Tobies, and Wolfram Schulte.
“A Precise Yet Efficient Memory Model For C”. In: ENTCS 254 (2009),
pp. 85–103. doi: 10.1016/j.entcs.2009.09.061.

[Coq20] The Coq Development Team. The Coq Proof Assistant, version 8.11.0.
Version 8.11.0. Jan. 2020. doi: 10.5281/zenodo.3744225.

[ÇPG16] Ezgi Çiçek, Zoe Paraskevopoulou, and Deepak Garg. “A type theory for
incremental computational complexity with control flow changes”. In:
ICFP. 2016, pp. 132–145. doi: 10.1145/2951913.2951950.

[CS14] David Costanzo and Zhong Shao. “A Separation Logic for Enforcing
Declarative Information Flow Control Policies”. In: POST. Vol. 8414.
LNCS. 2014, pp. 179–198. doi: 10.1007/978-3-642-54792-8_10.

[DA13] Josiah Dodds and Andrew W. Appel. “Mostly Sound Type System Im-
proves a Foundational Program Verifier”. In: CPP. Vol. 8307. LNCS.
2013, pp. 17–32. doi: 10.1007/978-3-319-03545-1_2.

[DAB09] Derek Dreyer, Amal Ahmed, and Lars Birkedal. “Logical step-indexed
logical relations”. In: LICS. 2009, pp. 71–80. doi: 10.1109/LICS.2009.
34.

178

https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/978-3-642-14295-6_41
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/3009837.3009858
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1016/j.entcs.2009.09.061
https://doi.org/10.5281/zenodo.3744225
https://doi.org/10.1145/2951913.2951950
https://doi.org/10.1007/978-3-642-54792-8_10
https://doi.org/10.1007/978-3-319-03545-1_2
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1109/LICS.2009.34

Bibliography

[Dan+20] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek
Dreyer. “RustBelt meets relaxed memory”. In: PACMPL 4.POPL (2020),
34:1–34:29. doi: 10.1145/3371102.

[DD15] Brijesh Dongol and John Derrick. “Verifying linearizability: A compara-
tive survey”. In: ACM Computing Surveys 48.2 (2015), 19:1–19:43. doi:
10.1145/2796550.

[Del+17] Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and
Anindya Banerjee. “Concurrent Data Structures Linked in Time”. In:
ECOOP. Vol. 74. LIPIcs. 2017, 8:1–8:30. doi: 10.4230/LIPIcs.ECOOP.
2017.8.

[DGW10] Thomas Dinsdale-Young, Philippa Gardner, and Mark J. Wheelhouse.
“Abstraction and Refinement for Local Reasoning”. In: VSTTE. Vol. 6217.
LNCS. Springer, 2010, pp. 199–215. doi: 10.1007/978-3-642-15057-
9_14.

[Din+10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew
Parkinson, and Viktor Vafeiadis. “Concurrent abstract predicates”. In:
ECOOP. Vol. 6183. LNCS. 2010, pp. 504–528. doi: 10.1007/978-3-642-
14107-2_24.

[Din+13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew
Parkinson, and Hongseok Yang. “Views: Compositional Reasoning for
Concurrent Programs”. In: POPL. 2013, pp. 287–300. doi: 10.1145/
2429069.2429104.

[Din+17] Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Andersen,
and Lars Birkedal. “Caper - Automatic Verification for Fine-Grained
Concurrency”. In: ESOP. Vol. 10201. LNCS. 2017, pp. 420–447. doi:
10.1007/978-3-662-54434-1_16.

[DNB12] Derek Dreyer, Georg Neis, and Lars Birkedal. “The impact of higher-
order state and control effects on local relational reasoning”. In: Journal
of Functional Programming 22.4-5 (2012), pp. 477–528. doi: 10.1017/
S095679681200024X.

[Dod+09] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis.
“Deny-Guarantee Reasoning”. In: ESOP. Ed. by Giuseppe Castagna.
Vol. 5502. LNCS. Springer, 2009, pp. 363–377. doi: 10.1007/978-3-
642-00590-9_26.

[DOY06] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. “A Local Shape
Analysis Based on Separation Logic”. In: TACAS. Vol. 3920. LNCS. 2006,
pp. 287–302. doi: 10.1007/11691372_19.

[Dre+10] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. “A
relational modal logic for higher-order stateful ADTs”. In: POPL. 2010,
pp. 185–198. doi: 10.1145/1706299.1706323.

179

https://doi.org/10.1145/3371102
https://doi.org/10.1145/2796550
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.1007/978-3-642-15057-9_14
https://doi.org/10.1007/978-3-642-15057-9_14
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1007/11691372_19
https://doi.org/10.1145/1706299.1706323

Bibliography

[Dre+19] Derek Dreyer, Amin Timany, Robbert Krebbers, Lars Birkedal, and Ralf
Jung. What Type Soundness Theorem Do You Really Want to Prove? Oct.
2019. url: https://blog.sigplan.org/2019/10/17/what-type-
soundness-theorem-do-you-really-want-to-prove/.

[DRG18] Thomas Dinsdale-Young, Pedro da Rocha Pinto, and Philippa Gardner.
“A Perspective on Specifying and Verifying Concurrent Modules”. In:
Journal of Logical and Algebraic Methods in Programming 98 (Aug. 2018),
pp. 1–25. doi: 10.1016/j.jlamp.2018.03.003.

[EM19] Gidon Ernst and Toby Murray. “SecCSL: Security Concurrent Separation
Logic”. In: CAV. Vol. 11562. LNCS. 2019, pp. 208–230. doi: 10.1007/
978-3-030-25543-5_13.

[ER12] Chucky Ellison and Grigore Rosu. “An Executable Formal Semantics
of C with Applications”. In: POPL. 2012, pp. 533–544. doi: 10.1145/
2103656.2103719.

[Fen+09] Xinyu Feng, Zhong Shao, Yu Guo, and Yuan Dong. “Certifying Low-
Level Programs with Hardware Interrupts and Preemptive Threads”. In:
J. Autom. Reasoning 42.2-4 (2009), pp. 301–347. doi: 10.1007/s10817-
009-9118-9.

[FGK19a] Dan Frumin, Léon Gondelman, and Robbert Krebbers. “Semi-
automated Reasoning About Non-determinism in C Expressions”. In:
ESOP. Vol. 11423. LNCS. Springer, 2019, pp. 60–87. doi: 10.1007/978-
3-030-17184-1_3.

[FGK19b] Dan Frumin, Léon Gondelman, and Robbert Krebbers. Semi-Automated
Reasoning About Non-Determinism in C Expressions: Coq Development.
Feb. 2019. url: https://groupoid.moe/wpc/.

[FH92] Matthias Felleisen and Robert Hieb. “The revised report on the syntactic
theories of sequential control and state”. In: Theoretical Computer Science
103.2 (1992), pp. 235–271. doi: 10.1016/0304-3975(92)90014-7.

[Fil+10] Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang.
“Abstraction for concurrent objects”. In: Theoretical Computer Science
411.51-52 (2010), pp. 4379–4398. doi: 10.1016/j.tcs.2010.09.021.

[FKB18] Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC: A Mecha-
nised Relational Logic for Fine-Grained Concurrency”. In: LICS. 2018,
pp. 442–451. doi: 10.1145/3209108.3209174.

[FKB20a] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Coq mechanization of
SeLoC. 2020. url: https://github.com/co-dan/seloc.

[FKB20b] Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC Reloaded:
A Mechanized Relational Logic for Fine-Grained Concurrency and
Logical Atomicity”. In: arXiv e-prints, arXiv:2006.13635 (June 2020),
arXiv:2006.13635. arXiv: 2006.13635 [cs.LO].

[FKB21a] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Appendix and Coq
development of ReLoC. 2021. url: https://iris-project.org/reloc/.

180

https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://doi.org/10.1016/j.jlamp.2018.03.003
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1007/s10817-009-9118-9
https://doi.org/10.1007/s10817-009-9118-9
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1007/978-3-030-17184-1_3
https://groupoid.moe/wpc/
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1145/3209108.3209174
https://github.com/co-dan/seloc
https://arxiv.org/abs/2006.13635
https://iris-project.org/reloc/

Bibliography

[FKB21b] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Compositional Non-
Interference for Fine-Grained Concurrent Programs. To appear in Security
& Privacy 2021. 2021. arXiv: 1910.00905 [cs.LO]. url: http://arxiv.
org/abs/1910.00905.

[Geu09] Herman Geuvers. “Proof assistants: History, ideas and future”. In: Sad-
hana 34.1 (2009), pp. 3–25. doi: 10.1007/s12046-009-0001-5.

[Gia+20] Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and
Robbert Krebbers. “Scala Step-by-Step: Soundness for DOT with Step-
Indexed Logical Relations in Iris”. In: PACMPL 4.ICFP (2020), 114:1–
114:29. doi: 10.1145/3408996.

[Gon+13] Georges Gonthier et al. “A Machine-Checked Proof of the Odd Order
Theorem”. In: ITP. Vol. 7998. LNCS. Springer, 2013, pp. 163–179. doi:
10.1007/978-3-642-39634-2_14.

[Gor99] Andrew D. Gordon. “Bisimilarity as a Theory of Functional Program-
ming”. In: Theoretical Computer Science 228.1-2 (1999), pp. 5–47. doi:
10.1016/S0304-3975(98)00353-3.

[Got+07] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly
Sagiv. “Local Reasoning for Storable Locks and Threads”. In: APLAS.
Ed. by Zhong Shao. Vol. 4807. LNCS. Springer, 2007, pp. 19–37. doi:
10.1007/978-3-540-76637-7_3.

[Gre+14] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein.
“Don’t Sweat the Small Stuff: Formal Verification of C Code Without the
Pain”. In: PLDI. 2014, pp. 429–439. doi: 10.1145/2594291.2594296.

[GTA19] Simon Gregersen, Søren Eller Thomsen, and Aslan Askarov. “A Depen-
dently Typed Library for Static Information-Flow Control in Idris”. In:
POST. Vol. 11426. LNCS. 2019, pp. 51–75. doi: 10.1007/978-3-030-
17138-4_3.

[HAN08] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. “Or-
acle Semantics for Concurrent Separation Logic”. In: ESOP. Ed. by
Sophia Drossopoulou. Vol. 4960. LNCS. Springer, 2008, pp. 353–367.
doi: 10.1007/978-3-540-78739-6_27.

[Har16] Robert Harper. Practical Foundations for Programming Languages (2nd.
Ed.) Cambridge University Press, 2016. url: https://www.cs.cmu.
edu/~rwh/pfpl/.

[HBK20] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers.
“Actris: Session-type based reasoning in separation logic”. In: PACMPL
4.POPL (2020), 6:1–6:30. doi: 10.1145/3371074.

[HD11] Chung-Kil Hur and Derek Dreyer. “A Kripke Logical Relation be-
tween ML and Assembly”. In: POPL. 2011, pp. 133–146. doi: 10.1145/
1926385.1926402.

[HER15] Chris Hathhorn, Chucky Ellison, and Grigore Rosu. “Defining the Un-
definedness of C”. In: PLDI. 2015, pp. 336–345. doi: 10.1145/2737924.
2737979.

181

https://arxiv.org/abs/1910.00905
http://arxiv.org/abs/1910.00905
http://arxiv.org/abs/1910.00905
https://doi.org/10.1007/s12046-009-0001-5
https://doi.org/10.1145/3408996
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1016/S0304-3975(98)00353-3
https://doi.org/10.1007/978-3-540-76637-7_3
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1007/978-3-030-17138-4_3
https://doi.org/10.1007/978-3-030-17138-4_3
https://doi.org/10.1007/978-3-540-78739-6_27
https://www.cs.cmu.edu/~rwh/pfpl/
https://www.cs.cmu.edu/~rwh/pfpl/
https://doi.org/10.1145/3371074
https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979

Bibliography

[Hin+21] Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and
Jesper Bengtson. Machine-Checked Semantic Session Typing. To appear at
CPP’21. 2021.

[Hoa+11] Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. “Con-
current Kleene algebra and its foundations”. In: The Journal of Logic and
Algebraic Programming 80.6 (2011), pp. 266–296. doi: 10.1016/j.jlap.
2011.04.005.

[HS08] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2008.

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. “A Scalable Lock-Free
Stack Algorithm”. In: SPAA. 2004, pp. 206–215. doi: 10.1145/1007912.
1007944.

[HW90] Maurice Herlihy and Jeannette Wing. “Linearizability: A Correctness
Condition for Concurrent Objects”. In: TOPLAS 12.3 (1990), pp. 463–
492. doi: 10.1145/78969.78972.

[IC20] Ninety Nine Percent Invisible and Kevin Caners. F raktur. Feb. 2020.
url: https://99percentinvisible.org/episode/fraktur/.

[IO01] Samin Ishtiaq and Peter O’Hearn. “BI as an assertion language for
mutable data structures”. In: POPL. 2001, pp. 14–26. doi: 10.1145/
360204.375719.

[Iri20] Iris team. The Iris Project website and Coq development. 2020. url: https:
//iris-project.org/.

[ISO12] ISO. ISO/IEC 9899-2011: Programming Languages – C. ISO Working
Group 14, 2012.

[JP11] Bart Jacobs and Frank Piessens. “Expressive modular fine-grained con-
currency specification”. In: POPL. 2011, pp. 271–282. doi: 10.1145/
1926385.1926417.

[JSP10] Bart Jacobs, Jan Smans, and Frank Piessens. “A Quick Tour of the Veri-
Fast Program Verifier”. In: APLAS. Vol. 6461. LNCS. 2010, pp. 304–311.
doi: 10.1007/978-3-642-17164-2_21.

[JSV10] Patricia Johann, Alex Simpson, and Janis Voigtländer. “A generic oper-
ational metatheory for algebraic effects”. In: LICS. 2010, pp. 209–218.
doi: 10.1109/LICS.2010.29.

[Jun+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. “Iris: Monoids and invariants as
an orthogonal basis for concurrent reasoning”. In: POPL. 2015, pp. 637–
650. doi: 10.1145/2676726.2676980.

[Jun+16] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. “Higher-
order ghost state”. In: ICFP. 2016, pp. 256–269. doi: 10.1145/2951913.
2951943.

182

https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/78969.78972
https://99percentinvisible.org/episode/fraktur/
https://doi.org/10.1145/360204.375719
https://doi.org/10.1145/360204.375719
https://iris-project.org/
https://iris-project.org/
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943

Bibliography

[Jun+18a] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
“RustBelt: securing the foundations of the rust programming language”.
In: PACMPL 2.POPL (2018), 66:1–66:34. doi: 10.1145/3158154.

[Jun+18b] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. “Iris from the ground up: A modular foun-
dation for higher-order concurrent separation logic”. In: Journal of Func-
tional Programming 28 (2018), e20. doi: 10.1017/S0956796818000151.

[Jun+20] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport,
Amin Timany, Derek Dreyer, and Bart Jacobs. “The future is ours:
prophecy variables in separation logic”. In: PACMPL 4.POPL (2020),
45:1–45:32. doi: 10.1145/3371113.

[Jun+21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Safe systems programming in Rust: The promise and the challenge. To
appear in CACM. 2021.

[Kai+17] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and
Viktor Vafeiadis. “Strong Logic for Weak Memory: Reasoning About
Release-Acquire Consistency in Iris”. In: ECOOP. Ed. by Peter Müller.
Vol. 74. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017, 17:1–17:29. doi: 10.4230/LIPIcs.ECOOP.2017.17.

[Kan+15] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,
Steve Zdancewic, and Viktor Vafeiadis. “A Formal C Memory Model
Supporting Integer-Pointer Casts”. In: POPL. 2015, pp. 326–335. doi:
10.1145/2737924.2738005.

[Kar+18] Aleksandr Karbyshev, Kasper Svendsen, Aslan Askarov, and Lars
Birkedal. “Compositional Non-interference for Concurrent Programs
via Separation and Framing”. In: POST. Vol. 10804. LNCS. 2018,
pp. 53–78. doi: 10.1007/978-3-319-89722-6_3.

[Khy+17] Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew Parkinson.
“Proving linearizability using partial orders”. In: ESOP. Vol. 10201.
LNCS. 2017, pp. 639–667. doi: 10.1007/978-3-662-54434-1_24.

[Knu02] Donald Knuth. “All Questions Answered”. In: Notices of the AMS 49.3
(2002), pp. 318–324.

[Koz94] Dexter Kozen. “A Completeness Theorem for Kleene Algebras and
the Algebra of Regular Events”. In: Information and Computation 110.2
(1994), pp. 366–390. doi: 10.1006/inco.1994.1037.

[Kre+17] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek
Dreyer, and Lars Birkedal. “The essence of higher-order concurrent
separation logic”. In: ESOP. Vol. 10201. LNCS. 2017, pp. 696–723. doi:
10.1007/978-3-662-54434-1_26.

183

https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1007/978-3-319-89722-6_3
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1007/978-3-662-54434-1_26

Bibliography

[Kre+18] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,
Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek
Dreyer. “MoSeL: A general, extensible modal framework for interactive
proofs in separation logic”. In: PACMPL 2.ICFP (2018), 77:1–77:30. doi:
10.1145/3236772.

[Kre13] Robbert Krebbers. “Aliasing Restrictions of C11 Formalized in Coq”.
In: CPP. Vol. 8307. LNCS. 2013, pp. 50–65. doi: 10.1007/978-3-319-
03545-1_4.

[Kre14] Robbert Krebbers. “An Operational and Axiomatic Semantics for Non-
determinism and Sequence Points in C”. In: POPL. 2014, pp. 101–112.
doi: 10.1145/2535838.2535878.

[Kre15] Robbert Krebbers. “The C Standard Formalized in Coq”. PhD thesis.
Radboud University Nijmegen, 2015.

[Kre16] Robbert Krebbers. “A Formal C Memory Model for Separation Logic”.
In: JAR 57.4 (2016), pp. 319–387. doi: 10.1007/s10817-016-9369-1.

[KSB17] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. “A Re-
lational Model of Types-and-Effects in Higher-Order Concurrent Sep-
aration Logic”. In: POPL. 2017, pp. 218–231. doi: 10.1145/3009837.
3009877.

[KTB17] Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs
in higher-order concurrent separation logic”. In: POPL. 2017, pp. 205–
217. doi: 10.1145/3009837.3009855.

[KW06] Vasileios Koutavas and Mitchell Wand. “Small bisimulations for reason-
ing about higher-order imperative programs”. In: POPL. 2006, pp. 141–
152. doi: 10.1145/1111037.1111050.

[KW13] Robbert Krebbers and Freek Wiedijk. “Separation Logic for Non-local
Control Flow and Block Scope Variables”. In: FoSSaCS. Vol. 7794. LNCS.
2013, pp. 257–272. doi: 10.1007/978-3-642-37075-5_17.

[Lah+17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. “Repairing Sequential Consistency in C/C++11”. In: PLDI.
2017, pp. 618–632. doi: 10.1145/3062341.3062352.

[LB08] Xavier Leroy and Sandrine Blazy. “Formal Verification of a C-like Mem-
ory Model and Its Uses for Verifying Program Transformations”. In: JAR
41.1 (2008), pp. 1–31. doi: 10.1007/s10817-008-9099-0.

[LC15] Luísa Lourenço and Luís Caires. “Dependent Information Flow Types”.
In: POPL. 2015, pp. 317–328. doi: 10.1145/2676726.2676994.

[Ler09] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: CACM
52.7 (2009), pp. 107–115. doi: 10.1145/1538788.1538814.

[LF13] Hongjin Liang and Xinyu Feng. “Modular verification of linearizability
with non-fixed linearization points”. In: PLDI. 2013, pp. 459–470. doi:
10.1145/2491956.2462189.

184

https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-319-03545-1_4
https://doi.org/10.1007/978-3-319-03545-1_4
https://doi.org/10.1145/2535838.2535878
https://doi.org/10.1007/s10817-016-9369-1
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/1111037.1111050
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/2676726.2676994
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2491956.2462189

Bibliography

[Liu+09] Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. “Model Checking
Linearizability via Refinement”. In: FM. Ed. by Ana Cavalcanti and
Dennis R. Dams. Vol. 5850. LNCS. 2009, pp. 321–337. doi: 10.1007/
978-3-642-05089-3_21.

[Mal14] Gregory Malecha. “Extensible Proof Engineering in Intensional Type
Theory”. PhD thesis. Harvard University, 2014.

[Mem+16] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nien-
huis, David Chisnall, Robert N. M. Watson, and Peter Sewell. “Into
the Depths of C: Elaborating the De Facto Standards”. In: PLDI. 2016,
pp. 1–15. doi: 10.1145/2908080.2908081.

[Mem+19] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell,
Alexander Richardson, Robert N. M. Watson, and Peter Sewell. “Explor-
ing C semantics and pointer provenance”. In: PACMPL 3.POPL (2019),
67:1–67:32. doi: 10.1145/3290380.

[Mit86] John Mitchell. “Representation Independence and Data Abstraction”.
In: POPL. 1986, pp. 263–276. doi: 10.1145/512644.512669.

[MJP19] Glen Mével, Jacques-Henri Jourdan, and François Pottier. “Time Credits
and Time Receipts in Iris”. In: ESOP. Vol. 11423. LNCS. Springer, 2019,
pp. 3–29. doi: 10.1007/978-3-030-17184-1_1.

[MM11] Yannick Moy and Claude Marché. The Jessie Plugin for Deduction Verifi-
cation in Frama-C, Tutorial and Reference Manual. 2011.

[MS91] John M. Mellor-Crummey and Michael L. Scott. “Algorithms for scalable
synchronization on shared-memory multiprocessors”. In: TOCS 9.1
(1991), pp. 21–65. doi: 10.1145/103727.103729.

[MS96] Maged Michael and Michael Scott. “Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms”. In: PODC. 1996,
pp. 267–275. doi: 10.1145/248052.248106.

[MSE18] Toby C. Murray, Robert Sison, and Kai Engelhardt. “COVERN: A Logic
for Compositional Verification of Information Flow Control”. In: Eu-
roS&P. 2018, pp. 16–30. doi: 10.1109/EuroSP.2018.00010.

[MSS11] Heiko Mantel, David Sands, and Henning Sudbrock. “Assumptions
and Guarantees for Compositional Noninterference”. In: CSF. 2011,
pp. 218–232. doi: 10.1109/CSF.2011.22.

[Mur+16] Toby Murray, Robert Sison, Edward Pierzchalski, and Christine
Rizkallah. “Compositional Verification and Refinement of Concurrent
Value-Dependent Noninterference”. In: CSF. 2016, pp. 417–431. doi:
10.1109/CSF.2016.36.

[Nak00] Hiroshi Nakano. “A Modality for Recursion”. In: LICS. 2000, pp. 255–
266. doi: 10.1109/LICS.2000.855774.

185

https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/3290380
https://doi.org/10.1145/512644.512669
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/248052.248106
https://doi.org/10.1109/EuroSP.2018.00010
https://doi.org/10.1109/CSF.2011.22
https://doi.org/10.1109/CSF.2016.36
https://doi.org/10.1109/LICS.2000.855774

Bibliography

[NBG13] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. “Depen-
dent type theory for verification of information flow and access control
policies”. In: TOPLAS 35.2 (2013), 6:1–6:41. doi: 10.1145/2491522.
2491523.

[NBN19] Mohammad Nikouei, Anindya Banerjee, and David A. Naumann.
“Data Abstraction and Relational Program Logic”. In: arXiv e-prints,
arXiv:1910.14560 (Oct. 2019), arXiv:1910.14560. arXiv: 1910.14560
[cs.LO].

[NDR11] Georg Neis, Derek Dreyer, and Andreas Rossberg. “Non-Parametric
Parametricity”. In: Journal of Functional Programming 21.4-5 (2011),
pp. 497–562. doi: 10.1017/S0956796811000165.

[NMS16] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. “An Op-
erational Semantics for C/C++11 Concurrency”. In: OOPSLA. 2016,
pp. 111–128. doi: 10.1145/2983990.2983997.

[Nor98] Michael Norrish. “C Formalised in HOL”. PhD thesis. University of
Cambridge, 1998.

[Nor99] Michael Norrish. “Deterministic Expressions in C”. In: ESOP. Vol. 1576.
LNCS. 1999, pp. 147–161. doi: 10.1007/3-540-49099-X_10.

[OHe07] Peter O’Hearn. “Resources, Concurrency, and Local Reasoning”. In:
Theoretical Computer Science 375.1-3 (2007), pp. 271–307. doi: 10.1016/
j.tcs.2006.12.035.

[OHe19] Peter O’Hearn. “Separation logic”. In: CACM 62.2 (2019), pp. 86–95.
doi: 10.1145/3211968.

[OP99] Peter O’Hearn and David Pym. “The logic of bunched implications”. In:
Bulletin of Symbolic Logic 5.2 (1999), pp. 215–244. doi: 10.2307/421090.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. “Local Rea-
soning about Programs that Alter Data Structures”. In: CSL. Vol. 2142.
LNCS. 2001, pp. 1–19. doi: 10.1007/3-540-44802-0_1.

[PA93] Gordon Plotkin and Martín Abadi. “A logic for parametric polymor-
phism”. In: TLCA. Vol. 664. LNCS. 1993, pp. 361–375. doi: 10.1007/
BFb0037118.

[PB05] Matthew J. Parkinson and Gavin M. Bierman. “Separation logic and
abstraction”. In: POPL. ACM, 2005, pp. 247–258. doi: 10.1145/1040305.
1040326.

[PBO07] Matthew Parkinson, Richard Bornat, and Peter O’Hearn. “Modular veri-
fication of a non-blocking stack”. In: POPL. Ed. by Martin Hofmann and
Matthias Felleisen. ACM, 2007, pp. 297–302. doi: 10.1145/1190216.
1190261.

[Pit00] Andrew M. Pitts. “Operational Semantics and Program Equivalence”.
In: APPSEM. Vol. 2395. LNCS. 2000, pp. 378–412. doi: 10.1007/3-540-
45699-6_8.

186

https://doi.org/10.1145/2491522.2491523
https://doi.org/10.1145/2491522.2491523
https://arxiv.org/abs/1910.14560
https://arxiv.org/abs/1910.14560
https://doi.org/10.1017/S0956796811000165
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1007/3-540-49099-X_10
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3211968
https://doi.org/10.2307/421090
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/BFb0037118
https://doi.org/10.1007/BFb0037118
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1007/3-540-45699-6_8
https://doi.org/10.1007/3-540-45699-6_8

Bibliography

[Pit05] Andrew M. Pitts. “Typed Operational Reasoning”. In: Advanced Topics
in Types and Programming Languages. Ed. by Benjamin C. Pierce. MIT
Press, 2005. Chap. 7, pp. 245–289.

[Plo76] Gordon Plotkin. “A powerdomain construction”. In: SIAM Journal on
Computing 5.3 (1976), pp. 452–487.

[PS03] François Pottier and Vincent Simonet. “Information flow inference for
ML”. In: TOPLAS 25.1 (2003), pp. 117–158. doi: 10.1145/596980.
596983.

[PS98] Andrew Pitts and Ian Stark. “Operational Reasoning for Functions with
Local State”. In: Higher Order Operational Techniques in Semantics. New
York, NY, USA: Cambridge University Press, 1998, pp. 227–274. url:
http://dl.acm.org/citation.cfm?id=309656.309671.

[Rad+18] Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian
Zuleger. “Monadic refinements for relational cost analysis”. In: PACMPL
2.POPL (2018), 36:1–36:32. doi: 10.1145/3158124.

[RDG14] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.
“TaDA: A logic for time and data abstraction”. In: ECOOP. Vol. 8586.
LNCS. 2014, pp. 207–231. doi: 10.1007/978-3-662-44202-9_9.

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data
Structures”. In: LICS. IEEE Computer Society, 2002, pp. 55–74. doi:
10.1109/LICS.2002.1029817.

[Rey74] John C. Reynolds. “Towards a theory of type structure”. In: Programming
Symposium, Proceedings Colloque sur la Programmation, Paris. Vol. 19.
LNCS. 1974, pp. 408–423.

[RG18] Vineet Rajani and Deepak Garg. “Types for Information Flow Control:
Labeling Granularity and Semantic Models”. In: CSF. 2018, pp. 233–
246. doi: 10.1109/CSF.2018.00024.

[Rin+19] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary
Tatlock. “QED at Large: A Survey of Engineering of Formally Verified
Software”. In: Found. Trends Program. Lang. 5.2-3 (2019), pp. 102–281.
doi: 10.1561/2500000045.

[Roc17] Pedro da Rocha Pinto. “Reasoning with Time and Data Abstractions”.
PhD thesis. Imperial College London, June 2017.

[Sam+20a] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak.
“The high-level benefits of low-level sandboxing”. In: PACMPL 4.POPL
(2020), 32:1–32:32. doi: 10.1145/3371100.

[Sam+20b] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memar-
ian, Derek Dreyer, and Deepak Garg. RefinedC: An Extensible Refinement
Type System for C Based on Separation Logic Programming. In submssion.
2020. url: https://plv.mpi-sws.org/refinedc/.

187

https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/596980.596983
http://dl.acm.org/citation.cfm?id=309656.309671
https://doi.org/10.1145/3158124
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/CSF.2018.00024
https://doi.org/10.1561/2500000045
https://doi.org/10.1145/3371100
https://plv.mpi-sws.org/refinedc/

Bibliography

[SB14] Kasper Svendsen and Lars Birkedal. “Impredicative concurrent abstract
predicates”. In: ESOP. Vol. 8410. LNCS. 2014, pp. 149–168. doi: 10.
1007/978-3-642-54833-8_9.

[SBP13] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. “Modular
Reasoning about Separation of Concurrent Data Structures”. In: ESOP.
Vol. 7792. LNCS. 2013, pp. 169–188. doi: 10.1007/978-3-642-37036-
6_11.

[SGD17] David Swasey, Deepak Garg, and Derek Dreyer. “Robust and Composi-
tional Verification of Object Capability Patterns”. In: PACMPL 1.OOP-
SLA (2017), 89:1–89:26. doi: 10.1145/3133913.

[SM03] Andrei Sabelfeld and Andrew C. Myers. “A Model for Delimited In-
formation Release”. In: ISSS. Vol. 3233. LNCS. 2003, pp. 174–191. doi:
10.1007/978-3-540-37621-7_9.

[SM19] Robert Sison and Toby Murray. “Verifying That a Compiler Preserves
Concurrent Value-Dependent Information-Flow Security”. In: ITP.
Vol. 141. LIPIcs. 2019, 27:1–27:19. doi: 10.4230/LIPIcs.ITP.2019.27.

[SMS20] Daniel Schoepe, Toby Murray, and Andrei Sabelfeld. “VERONICA:
Expressive and Precise Concurrent Information Flow Security (Ex-
tended Version with Technical Appendices)”. In: arXiv e-prints,
arXiv:2001.11142 (Jan. 2020), arXiv:2001.11142. arXiv: 2001.11142
[cs.LO].

[Smy76] Michael Smyth. “Powerdomains”. In: International Symposium on Math-
ematical Foundations of Computer Science. Springer. 1976, pp. 537–543.

[SP07] Eijiro Sumii and Benjamin C. Pierce. “A bisimulation for type abstrac-
tion and recursion”. In: JACM 54.5 (2007), p. 26. doi: 10.1145/1284320.
1284325.

[SS00] Andrei Sabelfeld and David Sands. “Probabilistic Noninterference for
Multi-Threaded Programs”. In: CSFW. 2000, pp. 200–214. doi: 10.1109/
CSFW.2000.856937.

[SS09] Andrei Sabelfeld and David Sands. “Declassification: Dimensions and
principles”. In: JCS 17.5 (2009), pp. 517–548. doi: 10.3233/JCS-2009-
0352.

[Ste+15] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.
Appel. “Compositional CompCert”. In: POPL. 2015, pp. 275–287. doi:
10.1145/2676726.2676985.

[STS15] Steven Schäfer, Tobias Tebbi, and Gert Smolka. “Autosubst: Reasoning
with de Bruijn terms and parallel substitutions”. In: ITP. Vol. 9236.
LNCS. 2015, pp. 359–374. doi: 10.1007/978-3-319-22102-1_24.

[SV11] Bas Spitters and Eelis Van der Weegen. “Type Classes for Mathematics
in Type Theory”. In: Mathematical Structures in Computer Science 21.4
(2011), pp. 795–825. doi: 10.1017/S0960129511000119.

188

https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1145/3133913
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.4230/LIPIcs.ITP.2019.27
https://arxiv.org/abs/2001.11142
https://arxiv.org/abs/2001.11142
https://doi.org/10.1145/1284320.1284325
https://doi.org/10.1145/1284320.1284325
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1017/S0960129511000119

Bibliography

[SV20] Alex Simpson and Niels Voorneveld. “Behavioural Equivalence via
Modalities for Algebraic Effects”. In: TOPLAS 42.1 (2020), 4:1–4:45.
doi: 10.1145/3363518.

[TB19] Amin Timany and Lars Birkedal. “Mechanized Relational Verification of
Concurrent Programs with Continuations”. In: PACMPL 3.ICFP (2019),
105:1–105:28. doi: 10.1145/3341709.

[TDB13] Aaron Turon, Derek Dreyer, and Lars Birkedal. “Unifying refinement
and Hoare-style reasoning in a logic for higher-order concurrency”. In:
ICFP. 2013, pp. 377–390. doi: 10.1145/2500365.2500600.

[Ter08] Tachio Terauchi. “A Type System for Observational Determinism”. In:
CSF. 2008, pp. 287–300. doi: 10.1109/CSF.2008.9.

[Tim+18] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars
Birkedal. “A logical relation for monadic encapsulation of state: proving
contextual equivalences in the presence of runST”. In: PACMPL 2.POPL
(2018), 64:1–64:28. doi: 10.1145/3158152.

[Tim18] Amin Timany. “Contributions in Programming Langues Theory: Logical
Relations and Type Theory”. PhD thesis. KU Leuven, 2018.

[TJH17] Joseph Tassarotti, Ralf Jung, and Robert Harper. “A Higher-Order
Logic for Concurrent Termination-Preserving Refinement”. In: ESOP.
Vol. 10201. LNCS. 2017, pp. 909–936. doi: 10.1007/978-3-662-54434-
1_34.

[Tre86] R. Kent Treiber. Systems Programming: Coping With Parallelism. Tech. rep.
Thomas J. Watson Research Center, 1986.

[Tur+13] Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek
Dreyer. “Logical relations for fine-grained concurrency”. In: POPL.
2013, pp. 343–356. doi: 10.1145/2429069.2429111.

[Vaf08] Viktor Vafeiadis. “Modular fine-grained concurrency verification”. PhD
thesis. University of Cambridge, 2008.

[Vaf09] Viktor Vafeiadis. “Shape-Value Abstraction for Verifying Linearizabil-
ity”. In: VMCI. Vol. 5403. LNCS. 2009, pp. 335–348. doi: 10.1007/978-
3-540-93900-9_27.

[VB21] Simon Friis Vindum and Lars Birkedal. Contextual Refinement of the
Michael-Scott Queue (Proof Pearl). To appear at CPP’21. 2021.

[VYY09] Martin Vechev, Eran Yahav, and Greta Yorsh. “Experience with Model
Checking Linearizability”. In: SPIN. Vol. 5578. LNCS. 2009, pp. 261–
278. doi: 10.1007/978-3-642-02652-2_21.

[Yan07] Hongseok Yang. “Relational separation logic”. In: Theoretical Computer
Science 375.1-3 (2007), pp. 308–334. doi: 10.1016/j.tcs.2006.12.036.

[Zda02] Stephan A. Zdancewic. “Programming Languages for Information Secu-
rity”. PhD thesis. Cornell University, 2002.

189

https://doi.org/10.1145/3363518
https://doi.org/10.1145/3341709
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1109/CSF.2008.9
https://doi.org/10.1145/3158152
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1007/978-3-540-93900-9_27
https://doi.org/10.1007/978-3-540-93900-9_27
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1016/j.tcs.2006.12.036

Bibliography

[ZM03] Steve Zdancewic and Andrew C. Myers. “Observational Determinism
for Concurrent Program Security”. In: CSF. 2003, p. 29. doi: 10.1109/
CSFW.2003.1212703.

[ZM07] Lantian Zheng and Andrew C. Myers. “Dynamic Security Labels and
Static Information Flow Control”. In: International Journal of Information
Security 6.2-3 (2007), pp. 67–84. doi: 10.1007/s10207-007-0019-9.

190

https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1007/s10207-007-0019-9

Summary

Verification of concurrent programs is known to be a challenging task, in particular
due to the intricate interactions that can be exhibited between the components of
a concurrent system. In this thesis we develop program logics aimed at verifying
properties of concurrent programs. Our approach is based on concurrent separation
logic, which is a widely employed family of program logics for reasoning about
stateful concurrent programs. We use the lens of concurrent separation logic to study
three program properties.

Firstly, we look at safety: is a program free of run-time errors and undefined
behavior? More specifically, a safe program does not dereference dangling pointers
and does not exhibit problematic data races. Secondly, we consider refinement of
programs: can one program be substituted for another one? Formally, if the first
program refines the second one, then the set of observable behaviors of the first
program is a subset of the observable behaviors of the second program. Lastly, we
look at security: does a program leak sensitive information? Under the formulation
of non-interference, a program is secure if it behaves the same way under different
sensitive inputs.

For each of the properties we develop a concurrent separation logic. In order to
study these properties and to construct appropriate logics, we use a methodology
that informs and guides the design of the verification methods. Firstly, the logics
that we develop support local and compositional reasoning, which enables us to
construct robust and reusable proofs about program modules that can be combined
together into a proof about a program as a whole. Secondly, the program logics are
connected to clearly stated properties via their soundness theorems. A soundness
theorem states that if a proof about the whole program can be derived in the logic,
then the program satisfies the desired property. The property itself is formulated
directly against the operational semantics, without referencing the logic. Finally, the
logics themselves, together with the soundness theorems, are fully mechanized in
the Coq proof assistant using the Iris framework. The mechanizations in Coq are
constructed in such a way that proofs about specific programs inside the logic (as
opposed to proofs about the logic) can be carried out interactively by the user in Coq.
We demonstrate the viability of the approach taken in this thesis by exercising our
logics on a number of examples and case studies.

191

Samenvatting

Verificatie van parallelle programma’s is een uitdagende opgave, in het bijzonder
vanwege de ingewikkelde interacties die tussen de verschillende onderdelen van een
parallel (concurrent) systeem kunnen optreden. In dit proefschrift ontwikkelen wij
programmalogica’s om eigenschappen van parallelle programma’s te bewijzen. Onze
aanpak is gebaseerd op concurrent separation logic, een veelgebruikte familie van
programmalogica’s voor het redeneren over parallelle programma’s. Wij gebruiken
inzichten van concurrent separation logic om drie eigenschappen van programma’s te
bestuderen.

Ten eerste kijken wij naar betrouwbaarheid (safety): kunnen er geen fouten optre-
den tijdens het uitvoeren van een programma (undefined behavior)? In het bijzonder
maakt een betrouwbaar programma geen gebruik van dangling pointers en heeft
het geen problematische data races. Ten tweede onderzoeken wij verfijning (refine-
ment) van programma’s: kan een programma door een ander vervangen worden?
Formeel gesproken, als het eerste programma het tweede programma verfijnt, dan
is de verzameling van waarneembare gedragingen van het eerste programma een
deelverzameling van de verzameling van waarneembare gedragingen van het tweede
programma. Ten slotte onderzoeken wij veiligheid (security): kan een programma
vertrouwelijke informatie lekken? Volgens het formalisme van non-interference is
een programma veilig indien het gedrag hetzelfde is bij verschillende vertrouwelijke
invoer.

Voor elke eigenschap ontwikkelen wij een concurrent separation logic. Om deze
eigenschappen te onderzoeken en om deze logica’s te construeren, volgen wij een
specifieke methodologie die het ontwerp van de programmalogica’s stuurt. Ten eerste,
de logica’s ondersteunen lokaal en compositioneel redeneren. Dat stelt ons in staat
om robuuste en herbruikbare bewijzen over programma modules te maken, en deze
bewijzen samen te stellen tot een bewijs over het hele programma. Ten tweede, elke
logica heeft een correctheidsstelling die garandeert dat een bewijs in de logica de
beoogde eigenschap van een programma impliceert, uitgedrukt middels de opera-
tionele semantiek van de programmeertaal. Ten slotte zijn de ontwikkelde logica’s
en hun correctheidsstellingen volledige geformaliseerd in het Coq bewijssysteem.
Hiervoor maken wij gebruik van het Iris framework voor hogere-orde concurrent
separation logic. De formalisaties in Coq zijn zo ontwikkeld dat bewijzen over con-
crete programma’s binnen de logica (in tegenstelling tot bewijzen over de logica zelf)
interactief met Coq gemaakt kunnen worden. Wij demonstreren de schaalbaarheid
van onze aanpak aan de hand van een scala aan voorbeelden en casestudy’s.

193

Titles in the IPA Dissertation

Series since 2018

A. Amighi. Specification and Verification
of Synchronisation Classes in Java: A Prac-
tical Approach. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2018-01

S. Darabi. Verification of Program Paral-
lelization. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-02

J.R. Salamanca Tellez. Coequations and
Eilenberg-type Correspondences. Faculty
of Science, Mathematics and Computer
Science, RU. 2018-03

P. Fiterău-Broştean. Active Model Learn-
ing for the Analysis of Network Proto-
cols. Faculty of Science, Mathematics
and Computer Science, RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java
Code. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2018-06

A. Lele. Response Modeling: Model Re-
finements for Timing Analysis of Runtime
Scheduling in Real-time Streaming Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and pro-

gramming. Faculty of Mathematics and
Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of railway
maintenance: Analysis and optimization
of maintenance via fault trees and statisti-
cal model checking. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2018-10

F. Yang. A Theory of Executability: with
a Focus on the Expressivity of Process Cal-
culi. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-11

L. Swartjes. Model-based design of bag-
gage handling systems. Faculty of Me-
chanical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Similarity
Measures for Curves and Surfaces. Faculty
of Mathematics and Computer Science,
TU/e. 2018-13

M. Talebi. Scalable Performance Analy-
sis of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14

R. Kumar. Truth or Dare: Quan-
titative security analysis using attack
trees. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-15

195

Titles in the IPA Dissertation Series since 2018

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software Devel-
opment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2018-16

M. Mehr. Faster Algorithms for
Geometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17

M. Alizadeh. Auditing of User Be-
havior: Identification, Analysis and Un-
derstanding of Deviations. Faculty of
Mathematics and Computer Science,
TU/e. 2018-18

P.A. Inostroza Valdera. Structuring Lan-
guages as Object-Oriented Libraries. Fac-
ulty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-20

A. Serrano Mena. Type Error Customiza-
tion for Embedded Domain-Specific Lan-
guages. Faculty of Science, UU. 2018-21

S.M.J. de Putter. Verification of Concur-
rent Systems in a Model-Driven Engineer-
ing Workflow. Faculty of Mathematics
and Computer Science, TU/e. 2019-01

S.M. Thaler. Automation for Information
Security using Machine Learning. Faculty
of Mathematics and Computer Science,
TU/e. 2019-02

Ö. Babur. Model Analytics and Manage-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova. Practi-
cal General Top-down Parsers. Faculty of
Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algorithms
for Geometric Network Problems. Faculty

of Mathematics and Computer Science,
TU/e. 2019-05

J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learn-
ing. Faculty of Science, Mathematics and
Computer Science, RU. 2019-06

V. Bloemen. Strong Connectivity
and Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-07

T.H.A. Castermans. Algorithms for Visu-
alization in Digital Humanities. Faculty
of Mathematics and Computer Science,
TU/e. 2019-08

W.M. Sonke. Algorithms for River Net-
work Analysis. Faculty of Mathematics
and Computer Science, TU/e. 2019-09

J.J.G. Meijer. Efficient Learning and
Analysis of System Behavior. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,
UvA. 2019-11

A.A. Sawant. The impact of API evolu-
tion on API consumers and how this can
be affected by API producers and language
designers. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2019-12

W.H.M. Oortwijn. Deductive Techniques
for Model-Based Concurrency Verifica-
tion. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-13

M.A. Cano Grijalba. Session-Based Con-
currency: Between Operational and Declar-
ative Views. Faculty of Science and Engi-
neering, RUG. 2020-01

196

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2020-02

R.A. van Rozen. Languages of Games
and Play: Automating Game Design & En-
abling Live Programming. Faculty of Sci-
ence, UvA. 2020-03

B. Changizi. Constraint-Based Analy-
sis of Business Process Models. Faculty
of Mathematics and Natural Sciences,
UL. 2020-04

N. Naus. Assisting End Users in Workflow
Systems. Faculty of Science, UU. 2020-05

J.J.H.M. Wulms. Stability of Geometric
Algorithms. Faculty of Mathematics and

Computer Science, TU/e. 2020-06

T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2020-07

P. van den Bos. Coverage and Games in
Model-Based Testing. Faculty of Science,
RU. 2020-08

M.F.M. Sondag. Algorithms for Coher-
ent Rectangular Visualizations. Faculty
of Mathematics and Computer Science,
TU/e. 2020-09

D.Frumin. Concurrent Separation Logics
for Safety, Refinement, and Security. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2021-01

197

Research Data Management

This thesis research has been carried out under the research data management policy
of the Institute for Computing and Information Science of Radboud University, The
Netherlands.13

The following research datasets have been produced during this PhD research:
• Chapter 2: Dan Frumin (2020): Background on separation logic, Coq code in a

Git repository. https://github.com/co-dan/thesis/tree/master/prelim

• Chapter 3: Dan Frumin, Léon Gondelman, Robbert Krebbers (2019): λMC: a
monadic translation of mini C into Iris’s HeapLang, Coq code in a Git repository.
https://gitlab.mpi-sws.org/iris/c/

• Chapter 4: Dan Frumin, Robbert Krebbers, Lars Birkedal (2020), ReLoC: a
logic for proving contextual refinements, Coq code in a Git repository. https:
//gitlab.mpi-sws.org/iris/reloc/

• Chapter 5: Dan Frumin, Robbert Krebbers, Lars Birkedal (2020), SeLoC: a logic
for proving non-interference, Coq code in a Git repository. https://github.
com/co-dan/SeLoC

Additionally, an archive with all the Coq formalizations, with versions corre-
sponding to the ones presented in this thesis, is available at https://github.com/
co-dan/thesis and https://doi.org/10.5281/zenodo.4445839.

13ru.nl/icis/research-data-management/, last accessed January 20th, 2021.

199

https://github.com/co-dan/thesis/tree/master/prelim
https://gitlab.mpi-sws.org/iris/c/
https://gitlab.mpi-sws.org/iris/reloc/
https://gitlab.mpi-sws.org/iris/reloc/
https://github.com/co-dan/SeLoC
https://github.com/co-dan/SeLoC
https://github.com/co-dan/thesis
https://github.com/co-dan/thesis
https://doi.org/10.5281/zenodo.4445839
https://www.ru.nl/icis/research-data-management/

About the author

Dan Frumin was born in 1993 in Krasnojarsk, Russia. Before starting school, he
moved with his family to Moscow. In 2014 he graduated from the Higher School
of Economics with a bachelor degree in computer science. In 2016 he obtained the
degree of Master of Logic cum laude at the University of Amsterdam. Afterwards, in
the same year, he started his PhD at the Radboud University under the supervision
of Herman Geuvers and Freek Wiedijk. Shortly after, Robbert Krebbers also became
his official supervisor.

As of September 2020, Dan works as a postdoctoral researcher in the group of
Jorge Pérez at the University of Groningen. Dan had his PhD defense in March 2021.
He lives happily ever after.[citation needed]

201

	1 Introduction
	1.1 Concurrent separation logics
	1.2 Mechanized reasoning
	1.3 Logics introduced in this thesis
	1.4 Contributions and outline

	2 Background on separation logic
	2.1 Syntax and semantics of HeapLang
	2.2 Basics of Iris
	2.3 Invariants in Iris
	2.4 Custom ghost state in Iris
	2.5 The Coq mechanization
	2.6 Defining custom logics in Iris

	3 lMC: a logic for non-determinsim in C expressions
	3.1 Introduction
	3.2 lMC: A monadic definitional semantics of C
	3.3 Separation logic with weakest preconditions for lMC
	3.4 Soundness of weakest preconditions for lMC
	3.5 A symbolic executor for lMC
	3.6 A verification condition generator for lMC
	3.7 Discussion
	3.8 Related work

	4 ReLoC: a logic for proving contextual refinements
	4.1 Introduction
	4.2 The programming language
	4.3 A tour of ReLoC
	4.4 A closer look at ReLoC
	4.5 Relational specifications in ReLoC
	4.6 Speculative reasoning using prophecy variables
	4.7 The logical relations model of ReLoC
	4.8 The Coq mechanization of ReLoC
	4.9 Related work
	4.10 Discussion and conclusion

	5 SeLoC: a logic for proving non-interference
	5.1 Introduction
	5.2 Motivating examples
	5.3 Preliminaries
	5.4 Overview of SeLoC
	5.5 Type system and logical relations
	5.6 Modular separation logic specifications
	5.7 Soundness
	5.8 Mechanization in Coq
	5.9 Discussion
	5.10 HOCAP-style modular specifications
	5.11 Related work
	5.12 Conclusions and future work

	Bibliography
	Summary
	Samenvatting
	Titles in the IPA Dissertation Series since 2018
	Research Data Management
	About the author

