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What'’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

e BI: a logic for reasoning about (separation of) resources.

Cut elimination: a proof of - ¢ only includes subformulas of .

e Semantic proof: proof by interpreting syntax in a model.

Structural extensions: extensions of the logic with certain axioms/rules.

Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.
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The logic of Bunched Implications

Bl freely combines intuitionistic and linear connectives:

p, € Prop :=True |False | p VY | oAU | p = ¢
[Emp | o*9p | ¢ ¢

Proposition represent own%&&resoimth ¢ and ¢ hold for owned resources}

[cp and ¢ hold for separate/disjoint resources}
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Bl has seen a lot of applications in CS, especially as a basis for program logics for
programs with arrays/dynamic memory

e /— v: the current state has the location Zin memory, and it stores the value v

e P x (: the current state can be divided into two disjoint parts, for which P
and @ hold respecively

o /s vx{ +— v':the locations ¢ and ¢ do not alias each other
e /— v Al — ' aliasing is allowed

® (1 (v1,0a) % by —> (v, €3) * -+ % Ly +—> (vp, €y) * £, — NULL:
a linked list without cycles
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Sequent calculus
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Sequent calculus

[Structu ral rules]
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Sequent calculus
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Sequent calculus
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Sequent calculus
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* Sequent calculus for Bl externalizes A and « as different connectives: § and ,.
Only § admits weakening and contraction.

e Because of that, contexts in the sequents are not lists/multisets, but trees
(referred to as bunches);

e Left rules can be applied deep inside an arbitrary bunched context.
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Intuitions:

e ¢ is an “intermediate lemma”

e provability relation is transitive
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Cut elimination

Theorem
Everything that is provable, is also provable without the cut rule: - ¢ = F @

Why eliminate cut?

¢ makes the calculus analytical (subformula property): any derivation of o - ¢
only involves formula that are already present in ¢ and ¢

e important ingredient in the automated proof search toolbox
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Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:
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Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:
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Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:
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A(Al ; Ag) l— (2

D etc..

10



Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details

1"



Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details

e Well-foundedness/termination measures can get complicated

1"



Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details
e Well-foundedness/termination measures can get complicated

e Bl specific: the tree-like structure of bunches contribute to the complexity

"



Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details
e Well-foundedness/termination measures can get complicated

e Bl specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

"



Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details
e Well-foundedness/termination measures can get complicated

e Bl specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

"
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Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.
CEe = Ftao

Bl algebra
A Bl algebra (C, <) consists of operations T, 1, V, A, —, Emp, %, — satisfying
various laws.

Soundness: p F v = [¢] < [¥].
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Intuition: Lindenbaum-Tarski algebra for completeness

Define [¢] = {¢ | ¢ 49}, and [p] <, [y] <= o F .

o L ={[¢] | ¢ € Frml} with <. is a Bl algebra;
e Main property of £L: [¢] = [¢]-
e Completeness: suppose ¢ |= 9.

e In particular: [¢] <. [¢¥], i.e. [¢] <z [¥];
e Conclusion: ¢ 1.

e The “real” work is to show that £ is indeed a model.
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What if we use - instead of - in the definition of £?

Need transitivity of <: [p] < [¢] < [x] = [¢] < [x]?

R

[Same as cut elimination: p b ¥ Fof ¥ = 0 bof X]
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IsC = ({{¢) | ¢ € Frml}, C) a Bl algebra?

Not closed under U, N... Cannot inherit the algebra structure from p(Bunch).
For example, (¢ V 9) € (¢ V 9), but does (¢ Vv ¢) belong to (p) U (1)?
Solution: “the next best thing”

() Vi)=Y ecCllpu) cY)

e

[The smallest set in C containing (y) U (¢>j

16



Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:

C={(){:) | I arbitrary set, o; € Frml} € p(Bunch)
el

cl(—) : p(Bunch) — C
c(X) = ({{e) | X S
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Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:
C= {ﬂ((pﬁ | I arbitrary set, p; € Frml} C p(Bunch)
iel
cl(=) : p(Bunch) — C
d(X) = (e | X S ()}
Proposition
If X e Cwith Aq,...,A, € X and
A F o .. ApF o
A

without the use of the cut rule, then A’ € X. 17



Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:

C= {ﬂ((pﬁ | I arbitrary set, p; € Frml} C p(Bunch)
iel

cl(=) : p(Bunch) — C

cd(X) = [{() | X C ()}
Lift operations to C:
XAY =XNY X-sY={A|VA eX.(AjA)eY}
XVY =c(XUY)
X+xY =c({A1 9 Ay |A1€eX,A0€Y}) XY ={A|VA' €X. (AyA)eY}
Proposition

C is a Bl algebra .



Fundamental property

Fundamental property
v € [¢] € ()

Proof by induction on ¢.
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Fundamental property

Fundamental property
v € [¢] € ()

Proof by induction on ¢.

Cut elimination
oY = plkg

If o 1, then [¢] C [4]-
If[] € [¢], then ¢ € o] € [9] € (¥) = ¢ Fer ¢
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Extensibility

The semantic approach is, arguably, more extensible.
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The semantic approach is, arguably, more extensible.

The key points in the proof:

e |nvertibility of certain rules w.r.t. .
e The resulting C is a Bl algebra

* p € gl € (v
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We consider two different types of extensions:
e Bl + additional structural rules, e.g. affine Bl
I(A) ¢
A ) AN F
C is a Bl algebra + some equations, e.g. pxq < p
e Bl + [ modality: Bl based on IS4

L LR
A(A)F B OAF A
A(OA)+ B OAF DA

C is a Bl algebra with a modal operator
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Extensions (analytic structural rules)

An analytic structural rule is of the form

I(Th[Aq, ..., AR F o (T [AL, .., A F o

where T1, ..., T,,, T are bunched terms - bunches built out of connectives ,, 3,
and variables z1,...,z,, and T is linear
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Extensions (analytic structural rules)

An analytic structural rule is of the form

I(Th[Aq, ..., AR F o (T [AL, .., A F o

where T1, ..., T,,, T are bunched terms - bunches built out of connectives ,, 3,
and variables z1,...,z,, and T is linear

Corresponds to the axiom:

[[T]](ph e 7pn) S [[Tl]](ply cee apn) \ARERY [[Tm]](pla fee 7pn>-
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Extensions (analytic structural rules)

How do we verify that

[T1(p1,- - on) < [M1)(P1s- -, 00) V- V [Tl (p1, - - - s Pn)-

holds in the model C?
Proposition
For X1, Xo,..., X,, €C,

C|({T[A1,...,An] ‘ A€ X;,1<i< n}) - [[T]](Xl,. . .,Xn).

And this becomes an equality when 7' is linear.
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Analytic completion

What if T is not linear?
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Analytic completion

I(T[A1, ..., An)) F ¢

What if T is not linear?

Then we can turn the above rule into an equivalent analytic rule.

23



Analytic completion
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Analytic completion

I(A) o
II(A g A) F o
correspondstop*xp <p
=
IA)Fe (A ko

II(A1 9 As) F o

corresponds to py * po < p1 V po
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Analytic completion

Clearly py * ps < p1 V po implies p*p < p.

For the other way around:

p1xp2 <
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Analytic completion

Clearly py * ps < p1 V po implies p*p < p.

For the other way around:

p1*p2 < (p1Vp2)* (p1Vp2) <p1Vpa.
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Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

e Good representation for C makes life easier

Record C := {
CPred :> Bunch — Prop;

CClosed : .... 7}

e Extensive use of setoids and setoid rewriting, based on the typeclasses from

the stdpp library

e Turn equations A = A’(T") into inductive systems

Inductive bunch_decomp : bunch — bunch_ctx — bunch — Prop
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Thank you for your attention!

Let me know if you have questions, d.frumin@rug.nl.
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