
Semantic Cut Elimination for
the Logic of Bunched Implications and Structural Extensions
(as formalized in Coq)

Dan Frumin
Grolog, 13 Oct

1

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ⊢ φ only includes subformulas of φ.
• Semantic proof: proof by interpreting syntax in a model.
• Structural extensions: extensions of the logic with certain axioms/rules.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.

• Cut elimination: a proof of ⊢ φ only includes subformulas of φ.
• Semantic proof: proof by interpreting syntax in a model.
• Structural extensions: extensions of the logic with certain axioms/rules.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ⊢ φ only includes subformulas of φ.

• Semantic proof: proof by interpreting syntax in a model.
• Structural extensions: extensions of the logic with certain axioms/rules.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ⊢ φ only includes subformulas of φ.
• Semantic proof: proof by interpreting syntax in a model.

• Structural extensions: extensions of the logic with certain axioms/rules.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ⊢ φ only includes subformulas of φ.
• Semantic proof: proof by interpreting syntax in a model.
• Structural extensions: extensions of the logic with certain axioms/rules.

• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

What’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

• BI: a logic for reasoning about (separation of) resources.
• Cut elimination: a proof of ⊢ φ only includes subformulas of φ.
• Semantic proof: proof by interpreting syntax in a model.
• Structural extensions: extensions of the logic with certain axioms/rules.
• Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

2

https://github.com/co-dan/BI-cutelim

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

φ,ψ ∈ Prop ::= True | False | φ ∨ ψ | φ ∧ ψ | φ→ ψ

Proposition represent ownership of resources Intuitionistic logicLinear logic (fragment)

True ∧ φ = φ φ ∧ (φ→ ψ) ⊢ ψ
Emp ∗ φ = φ φ ∗ (φ −∗ ψ) ⊢ ψ

φ ∧ ψ ⊢ φ φ ⊢ φ ∧ φ
φ ∗ ψ ̸⊢ φ φ ̸⊢ φ ∗ φ

Both φ and ψ hold for owned resources

φ and ψ hold for separate/disjoint resources

3

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

φ,ψ ∈ Prop ::= True | False | φ ∨ ψ | φ ∧ ψ | φ→ ψ

| Emp | φ ∗ ψ | φ −∗ ψ

Proposition represent ownership of resources

Intuitionistic logic

Linear logic (fragment)True ∧ φ = φ φ ∧ (φ→ ψ) ⊢ ψ
Emp ∗ φ = φ φ ∗ (φ −∗ ψ) ⊢ ψ

φ ∧ ψ ⊢ φ φ ⊢ φ ∧ φ
φ ∗ ψ ̸⊢ φ φ ̸⊢ φ ∗ φ

Both φ and ψ hold for owned resources

φ and ψ hold for separate/disjoint resources

3

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

φ,ψ ∈ Prop ::= True | False | φ ∨ ψ | φ ∧ ψ | φ→ ψ

| Emp | φ ∗ ψ | φ −∗ ψ

Proposition represent ownership of resources Intuitionistic logic

Linear logic (fragment)

True ∧ φ = φ φ ∧ (φ→ ψ) ⊢ ψ
Emp ∗ φ = φ φ ∗ (φ −∗ ψ) ⊢ ψ

φ ∧ ψ ⊢ φ φ ⊢ φ ∧ φ
φ ∗ ψ ̸⊢ φ φ ̸⊢ φ ∗ φ

Both φ and ψ hold for owned resources

φ and ψ hold for separate/disjoint resources

3

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

φ,ψ ∈ Prop ::= True | False | φ ∨ ψ | φ ∧ ψ | φ→ ψ

| Emp | φ ∗ ψ | φ −∗ ψ

Proposition represent ownership of resources Intuitionistic logicLinear logic (fragment)

True ∧ φ = φ φ ∧ (φ→ ψ) ⊢ ψ
Emp ∗ φ = φ φ ∗ (φ −∗ ψ) ⊢ ψ

φ ∧ ψ ⊢ φ φ ⊢ φ ∧ φ
φ ∗ ψ ̸⊢ φ φ ̸⊢ φ ∗ φ

Both φ and ψ hold for owned resources

φ and ψ hold for separate/disjoint resources

3

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

φ,ψ ∈ Prop ::= True | False | φ ∨ ψ | φ ∧ ψ | φ→ ψ

| Emp | φ ∗ ψ | φ −∗ ψ

Proposition represent ownership of resources

Intuitionistic logicLinear logic (fragment)True ∧ φ = φ φ ∧ (φ→ ψ) ⊢ ψ
Emp ∗ φ = φ φ ∗ (φ −∗ ψ) ⊢ ψ

φ ∧ ψ ⊢ φ φ ⊢ φ ∧ φ
φ ∗ ψ ̸⊢ φ φ ̸⊢ φ ∗ φ

Both φ and ψ hold for owned resources

φ and ψ hold for separate/disjoint resources

3

The logic of Bunched Implications

BI freely combines intuitionistic and linear connectives:

φ,ψ ∈ Prop ::= True | False | φ ∨ ψ | φ ∧ ψ | φ→ ψ

| Emp | φ ∗ ψ | φ −∗ ψ

Proposition represent ownership of resources

Intuitionistic logicLinear logic (fragment)True ∧ φ = φ φ ∧ (φ→ ψ) ⊢ ψ
Emp ∗ φ = φ φ ∗ (φ −∗ ψ) ⊢ ψ

φ ∧ ψ ⊢ φ φ ⊢ φ ∧ φ
φ ∗ ψ ̸⊢ φ φ ̸⊢ φ ∗ φ

Both φ and ψ hold for owned resources

φ and ψ hold for separate/disjoint resources

3

Why BI?

BI has seen a lot of applications in CS, especially as a basis for program logics for
programs with arrays/dynamic memory

• ℓ 7→ v: the current state has the location ℓ in memory, and it stores the value v
• P ∗Q: the current state can be divided into two disjoint parts, for which P

and Q hold respecively

• ℓ 7→ v ∗ ℓ′ 7→ v′: the locations ℓ and ℓ′ do not alias each other
• ℓ 7→ v ∧ ℓ′ 7→ v′: aliasing is allowed
• ℓ1 7→ (v1, ℓ2) ∗ ℓ2 7→ (v2, ℓ3) ∗ · · · ∗ ℓn 7→ (vn, ℓo) ∗ ℓo 7→ NULL:

a linked list without cycles

4

Why BI?

BI has seen a lot of applications in CS, especially as a basis for program logics for
programs with arrays/dynamic memory

• ℓ 7→ v: the current state has the location ℓ in memory, and it stores the value v
• P ∗Q: the current state can be divided into two disjoint parts, for which P

and Q hold respecively
• ℓ 7→ v ∗ ℓ′ 7→ v′: the locations ℓ and ℓ′ do not alias each other
• ℓ 7→ v ∧ ℓ′ 7→ v′: aliasing is allowed

• ℓ1 7→ (v1, ℓ2) ∗ ℓ2 7→ (v2, ℓ3) ∗ · · · ∗ ℓn 7→ (vn, ℓo) ∗ ℓo 7→ NULL:
a linked list without cycles

4

Why BI?

BI has seen a lot of applications in CS, especially as a basis for program logics for
programs with arrays/dynamic memory

• ℓ 7→ v: the current state has the location ℓ in memory, and it stores the value v
• P ∗Q: the current state can be divided into two disjoint parts, for which P

and Q hold respecively
• ℓ 7→ v ∗ ℓ′ 7→ v′: the locations ℓ and ℓ′ do not alias each other
• ℓ 7→ v ∧ ℓ′ 7→ v′: aliasing is allowed
• ℓ1 7→ (v1, ℓ2) ∗ ℓ2 7→ (v2, ℓ3) ∗ · · · ∗ ℓn 7→ (vn, ℓo) ∗ ℓo 7→ NULL:

a linked list without cycles

4

Sequent calculus

Sequent: Γ ⊢ ϕ

⊢ χ

⊢ χ

Γ;φ;ψ ⊢ χ

Γ;φ ∧ ψ ⊢ χ

ΓΓ ⊢ χ

Γ ⊢ χ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1 , Γ2 ⊢ φ ∗ ψ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1; Γ2 ⊢ φ ∧ ψ

Γ ⊢ χ

ΓΓ′ ⊢ χ
Sequent: Γ ⊢ ϕ

Left and right rulesStructural rules

Γ ::= φ | Γ ; Γ | Γ , Γ | . . .

5

Sequent calculus

Sequent: Γ ⊢ ϕ

⊢ χ

⊢ χ

Γ;φ;ψ ⊢ χ

Γ;φ ∧ ψ ⊢ χ

Γ; Γ ⊢ χ

Γ ⊢ χ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1 , Γ2 ⊢ φ ∗ ψ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1; Γ2 ⊢ φ ∧ ψ

Γ ⊢ χ

Γ; Γ′ ⊢ χ

Sequent: Γ ⊢ ϕ

Left and right rules

Structural rules

Γ ::= φ | Γ ; Γ | Γ , Γ | . . .

5

Sequent calculus

Sequent: Γ ⊢ ϕ

⊢ χ

⊢ χ

Γ;φ ; ψ ⊢ χ

Γ;φ ∧ ψ ⊢ χ

Γ ; Γ ⊢ χ

Γ ⊢ χ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1 , Γ2 ⊢ φ ∗ ψ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1 ; Γ2 ⊢ φ ∧ ψ

Γ ⊢ χ

Γ ; Γ′ ⊢ χ

Sequent: Γ ⊢ ϕ

Left and right rules

Structural rules

Γ ::= φ | Γ ; Γ | Γ , Γ | . . .

5

Sequent calculus

Sequent: Γ ⊢ ϕ

Γ; (φ , ψ) ⊢ χ
Γ;φ ∗ ψ ⊢ χ

Γ;φ ; ψ ⊢ χ

Γ;φ ∧ ψ ⊢ χ

Γ ; Γ ⊢ χ

Γ ⊢ χ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1 , Γ2 ⊢ φ ∗ ψ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1 ; Γ2 ⊢ φ ∧ ψ

Γ ⊢ χ

Γ ; Γ′ ⊢ χ

Sequent: Γ ⊢ ϕ

Left and right rulesStructural rules

Γ ::= φ | Γ ; Γ | Γ , Γ | . . .

5

Sequent calculus

Sequent: Γ ⊢ ϕ

∆(φ , ψ) ⊢ χ
∆(φ ∗ ψ) ⊢ χ

∆(φ ; ψ) ⊢ χ
∆(φ ∧ ψ) ⊢ χ

∆(Γ ; Γ) ⊢ χ
∆(Γ) ⊢ χ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1 , Γ2 ⊢ φ ∗ ψ

Γ1 ⊢ φ Γ2 ⊢ ψ

Γ1 ; Γ2 ⊢ φ ∧ ψ

∆(Γ) ⊢ χ

∆(Γ ; Γ′) ⊢ χ

Sequent: Γ ⊢ ϕ

Left and right rulesStructural rules

Γ ::= φ | Γ ; Γ | Γ , Γ | . . .

5

Sequent calculus

∆ , φ ⊢ ψ

∆ ⊢ φ −∗ ψ

∆ ; φ ⊢ ψ

∆ ⊢ φ→ ψ

6

BI sequent calculus

• Sequent calculus for BI externalizes ∧ and ∗ as different connectives: ; and ,.
Only ; admits weakening and contraction.

• Because of that, contexts in the sequents are not lists/multisets, but trees
(referred to as bunches);

• Left rules can be applied deep inside an arbitrary bunched context.

7

BI sequent calculus

• Sequent calculus for BI externalizes ∧ and ∗ as different connectives: ; and ,.
Only ; admits weakening and contraction.

• Because of that, contexts in the sequents are not lists/multisets, but trees
(referred to as bunches);

• Left rules can be applied deep inside an arbitrary bunched context.

7

BI sequent calculus

• Sequent calculus for BI externalizes ∧ and ∗ as different connectives: ; and ,.
Only ; admits weakening and contraction.

• Because of that, contexts in the sequents are not lists/multisets, but trees
(referred to as bunches);

• Left rules can be applied deep inside an arbitrary bunched context.

7

Cut rule

cut
∆′ ⊢ ψ ∆(ψ) ⊢ φ

∆(∆′) ⊢ φ

Intuitions:

• ψ is an “intermediate lemma”
• provability relation is transitive

8

Cut rule

cut
∆′ ⊢ ψ ∆(ψ) ⊢ φ

∆(∆′) ⊢ φ

Intuitions:

• ψ is an “intermediate lemma”

• provability relation is transitive

8

Cut rule

cut
∆′ ⊢ ψ ∆(ψ) ⊢ φ

∆(∆′) ⊢ φ

Intuitions:

• ψ is an “intermediate lemma”
• provability relation is transitive

8

Cut elimination

Theorem
Everything that is provable, is also provable without the cut rule: ⊢ φ =⇒ ⊢cf φ

Why eliminate cut?

• makes the calculus analytical (subformula property): any derivation of φ ⊢ ψ
only involves formula that are already present in φ and ψ

• important ingredient in the automated proof search toolbox

9

Cut elimination

Theorem
Everything that is provable, is also provable without the cut rule: ⊢ φ =⇒ ⊢cf φ

Why eliminate cut?

• makes the calculus analytical (subformula property): any derivation of φ ⊢ ψ
only involves formula that are already present in φ and ψ

• important ingredient in the automated proof search toolbox

9

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

. . .

∆1 ;∆2 ⊢ ψ1 ∧ ψ2

. . .

∆(ψ1 ∧ ψ2) ⊢ φ

∆(∆1 ;∆2) ⊢ φ

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

?

∆1 ;∆2 ⊢ ψ1 ∧ ψ2

?

∆(ψ1 ∧ ψ2) ⊢ φ

∆(∆1 ;∆2) ⊢ φ

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ⊢ ψ1 ∆2 ⊢ ψ2

∆1 ;∆2 ⊢ ψ1 ∧ ψ2

∆(ψ1 ; ψ2) ⊢ φ

∆(ψ1 ∧ ψ2) ⊢ φ

∆(∆1 ;∆2) ⊢ φ

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ⊢ ψ1 ∆2 ⊢ ψ2

∆1 ;∆2 ⊢ ψ1 ∧ ψ2

∆(ψ1 ; ψ2) ⊢ φ

∆(ψ1 ∧ ψ2) ⊢ φ

∆(∆1 ;∆2) ⊢ φ

⇝
∆2 ⊢ ψ2

∆1 ⊢ ψ1 ∆(ψ1 ; ψ2) ⊢ φ

∆(∆1 ; ψ2) ⊢ φ

∆(∆1 ;∆2) ⊢ φ
10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ⊢ ψ1 ∆2 ⊢ ψ2

∆1 ;∆2 ⊢ ψ1 ∧ ψ2

?

∆(ψ1 ∧ ψ2) ⊢ φ

∆(∆1 ;∆2) ⊢ φ

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ⊢ ψ1 ∆2 ⊢ ψ2

∆1 ;∆2 ⊢ ψ1 ∧ ψ2

∆(ψ1 ∧ ψ2) ; φ1 ⊢ φ2

∆(ψ1 ∧ ψ2) ⊢ φ1 → φ2

∆(∆1 ;∆2) ⊢ φ1 → φ2

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

∆1 ⊢ ψ1 ∆2 ⊢ ψ2

∆1 ;∆2 ⊢ ψ1 ∧ ψ2

∆(ψ1 ∧ ψ2) ; φ1 ⊢ φ2

∆(ψ1 ∧ ψ2) ⊢ φ1 → φ2

∆(∆1 ;∆2) ⊢ φ1 → φ2

⇝

∆1 ;∆2 ⊢ ψ1 ∧ ψ2 ∆(ψ1 ∧ ψ2) ; φ1 ⊢ φ2

∆(∆1 ;∆2) ; φ1 ⊢ φ2

∆(∆1 ;∆2) ⊢ φ1 → φ2

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

?

∆1 ;∆2 ⊢ ψ1 ∧ ψ2

?

∆(ψ1 ∧ ψ2) ⊢ φ

∆(∆1 ;∆2) ⊢ φ

⇝ etc..

10

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details

• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

11

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details
• Well-foundedness/termination measures can get complicated

• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

11

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details
• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

11

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details
• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

11

Limitations of the direct-style proof

• There are a lot of cases to consider, with a lot of syntactic details
• Well-foundedness/termination measures can get complicated
• BI specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

11

Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.

C |= φ =⇒ ⊢cf φ

BI algebra
A BI algebra (C,≤) consists of operations ⊤,⊥,∨,∧,→, Emp, ∗,−∗ satisfying
various laws.

Soundness: φ ⊢ ψ =⇒ JφK ≤ JψK.

12

Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.

C |= φ =⇒ ⊢cf φ

BI algebra
A BI algebra (C,≤) consists of operations ⊤,⊥,∨,∧,→, Emp, ∗,−∗ satisfying
various laws.

Soundness: φ ⊢ ψ =⇒ JφK ≤ JψK.

12

Intuition: Lindenbaum-Tarski algebra for completeness

Define [φ] = {ψ | φ ⊣⊢ ψ}, and [φ] ≤L [ψ] ⇐⇒ φ ⊢ ψ.

• L = {[φ] | φ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JφK = [φ].
• Completeness: suppose φ |= ψ.

• In particular: JφK ≤L JψK, i.e. [φ] ≤L [ψ];
• Conclusion: φ ⊢ ψ.

• The “real” work is to show that L is indeed a model.

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [φ] = {ψ | φ ⊣⊢ ψ}, and [φ] ≤L [ψ] ⇐⇒ φ ⊢ ψ.

• L = {[φ] | φ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JφK = [φ].

• Completeness: suppose φ |= ψ.

• In particular: JφK ≤L JψK, i.e. [φ] ≤L [ψ];
• Conclusion: φ ⊢ ψ.

• The “real” work is to show that L is indeed a model.

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [φ] = {ψ | φ ⊣⊢ ψ}, and [φ] ≤L [ψ] ⇐⇒ φ ⊢ ψ.

• L = {[φ] | φ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JφK = [φ].
• Completeness: suppose φ |= ψ.

• In particular: JφK ≤L JψK, i.e. [φ] ≤L [ψ];
• Conclusion: φ ⊢ ψ.

• The “real” work is to show that L is indeed a model.

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [φ] = {ψ | φ ⊣⊢ ψ}, and [φ] ≤L [ψ] ⇐⇒ φ ⊢ ψ.

• L = {[φ] | φ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JφK = [φ].
• Completeness: suppose φ |= ψ.

• In particular: JφK ≤L JψK, i.e. [φ] ≤L [ψ];

• Conclusion: φ ⊢ ψ.

• The “real” work is to show that L is indeed a model.

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [φ] = {ψ | φ ⊣⊢ ψ}, and [φ] ≤L [ψ] ⇐⇒ φ ⊢ ψ.

• L = {[φ] | φ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JφK = [φ].
• Completeness: suppose φ |= ψ.

• In particular: JφK ≤L JψK, i.e. [φ] ≤L [ψ];
• Conclusion: φ ⊢ ψ.

• The “real” work is to show that L is indeed a model.

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [φ] = {ψ | φ ⊣⊢ ψ}, and [φ] ≤L [ψ] ⇐⇒ φ ⊢ ψ.

• L = {[φ] | φ ∈ Frml} with ≤L is a BI algebra;
• Main property of L: JφK = [φ].
• Completeness: suppose φ |= ψ.

• In particular: JφK ≤L JψK, i.e. [φ] ≤L [ψ];
• Conclusion: φ ⊢ ψ.

• The “real” work is to show that L is indeed a model.

13

Attempt 1

What if we use ⊢cf instead of ⊢ in the definition of L?

Need transitivity of ≤: [φ] ≤ [ψ] ≤ [χ] =⇒ [φ] ≤ [χ]?

Same as cut elimination: φ ⊢cf ψ ⊢cf χ =⇒ φ ⊢cf χ

14

Attempt 1

What if we use ⊢cf instead of ⊢ in the definition of L?

Need transitivity of ≤: [φ] ≤ [ψ] ≤ [χ] =⇒ [φ] ≤ [χ]?

Same as cut elimination: φ ⊢cf ψ ⊢cf χ =⇒ φ ⊢cf χ

14

Attempt 1

What if we use ⊢cf instead of ⊢ in the definition of L?

Need transitivity of ≤: [φ] ≤ [ψ] ≤ [χ] =⇒ [φ] ≤ [χ]?

Same as cut elimination: φ ⊢cf ψ ⊢cf χ =⇒ φ ⊢cf χ

14

Attempt 2

Attempted solution: use sets of predecessors.

⟨φ⟩ = {∆ | ∆ ⊢cf φ} ∈ ℘(Bunch),

with the subset inclusion relation.

Note that φ ∈ ⟨φ⟩. Hence, ⟨φ⟩ ⊆ ⟨ψ⟩ implies

φ ∈ ⟨ψ⟩ ⇐⇒ φ ⊢cf ψ.

φ ⊢cf φ

15

Attempt 2

Attempted solution: use sets of predecessors.

⟨φ⟩ = {∆ | ∆ ⊢cf φ} ∈ ℘(Bunch),

with the subset inclusion relation.

Note that φ ∈ ⟨φ⟩. Hence, ⟨φ⟩ ⊆ ⟨ψ⟩ implies

φ ∈ ⟨ψ⟩ ⇐⇒ φ ⊢cf ψ.

φ ⊢cf φ

15

Attempt 2

Attempted solution: use sets of predecessors.

⟨φ⟩ = {∆ | ∆ ⊢cf φ} ∈ ℘(Bunch),

with the subset inclusion relation.

Note that φ ∈ ⟨φ⟩. Hence, ⟨φ⟩ ⊆ ⟨ψ⟩ implies

φ ∈ ⟨ψ⟩ ⇐⇒ φ ⊢cf ψ.

φ ⊢cf φ

15

Attempt 3

Is C = ({⟨φ⟩ | φ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

For example, (φ ∨ ψ) ∈ ⟨φ ∨ ψ⟩, but does (φ ∨ ψ) belong to ⟨φ⟩ ∪ ⟨ψ⟩?

Solution: “the next best thing”

⟨φ⟩ ∨ ⟨ψ⟩ =
⋂

{Y ∈ C | ⟨φ⟩ ∪ ⟨ψ⟩ ⊆ Y }

The smallest set in C containing ⟨φ⟩ ∪ ⟨ψ⟩

16

Attempt 3

Is C = ({⟨φ⟩ | φ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

For example, (φ ∨ ψ) ∈ ⟨φ ∨ ψ⟩, but does (φ ∨ ψ) belong to ⟨φ⟩ ∪ ⟨ψ⟩?

Solution: “the next best thing”

⟨φ⟩ ∨ ⟨ψ⟩ =
⋂

{Y ∈ C | ⟨φ⟩ ∪ ⟨ψ⟩ ⊆ Y }

The smallest set in C containing ⟨φ⟩ ∪ ⟨ψ⟩

16

Attempt 3

Is C = ({⟨φ⟩ | φ ∈ Frml},⊆) a BI algebra?

Not closed under ∪, ∩... Cannot inherit the algebra structure from ℘(Bunch).

For example, (φ ∨ ψ) ∈ ⟨φ ∨ ψ⟩, but does (φ ∨ ψ) belong to ⟨φ⟩ ∪ ⟨ψ⟩?

Solution: “the next best thing”

⟨φ⟩ ∨ ⟨ψ⟩ =
⋂

{Y ∈ C | ⟨φ⟩ ∪ ⟨ψ⟩ ⊆ Y }

The smallest set in C containing ⟨φ⟩ ∪ ⟨ψ⟩

16

Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:

C = {
⋂
i∈I

⟨φi⟩ | I arbitrary set, φi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch) → C

cl(X) =
⋂

{⟨φ⟩ | X ⊆ ⟨φ⟩}

The smallest set in C containing X

17

Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:

C = {
⋂
i∈I

⟨φi⟩ | I arbitrary set, φi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch) → C

cl(X) =
⋂

{⟨φ⟩ | X ⊆ ⟨φ⟩}

The smallest set in C containing X

17

Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:

C = {
⋂
i∈I

⟨φi⟩ | I arbitrary set, φi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch) → C

cl(X) =
⋂

{⟨φ⟩ | X ⊆ ⟨φ⟩}

Proposition
If X ∈ C with ∆1, . . . ,∆n ∈ X and

∆1 ⊢ φ . . . ∆n ⊢ φ

∆′ ⊢ φ

without the use of the cut rule, then ∆′ ∈ X .

The smallest set in C containing X

17

Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:

C = {
⋂
i∈I

⟨φi⟩ | I arbitrary set, φi ∈ Frml} ⊆ ℘(Bunch)

cl(−) : ℘(Bunch) → C

cl(X) =
⋂

{⟨φ⟩ | X ⊆ ⟨φ⟩}

Lift operations to C:
X ∧ Y = X ∩ Y X → Y = {∆ | ∀∆′ ∈ X. (∆ ;∆′) ∈ Y }
X ∨ Y = cl(X ∪ Y)

X ∗ Y = cl({∆1 ,∆2 | ∆1 ∈ X,∆2 ∈ Y }) X −∗ Y = {∆ | ∀∆′ ∈ X. (∆ ,∆′) ∈ Y }

Proposition
C is a BI algebra

The smallest set in C containing X

17

Fundamental property

Fundamental property
φ ∈ JφK ⊆ ⟨φ⟩

Proof by induction on φ.

Cut elimination
φ ⊢ ψ =⇒ φ ⊢cf ψ

If φ ⊢ ψ, then JφK ⊆ JψK.

If JφK ⊆ JψK, then φ ∈ JφK ⊆ JψK ⊆ ⟨ψ⟩ =⇒ φ ⊢cf ψ.

18

Fundamental property

Fundamental property
φ ∈ JφK ⊆ ⟨φ⟩

Proof by induction on φ.

Cut elimination
φ ⊢ ψ =⇒ φ ⊢cf ψ

If φ ⊢ ψ, then JφK ⊆ JψK.

If JφK ⊆ JψK, then φ ∈ JφK ⊆ JψK ⊆ ⟨ψ⟩ =⇒ φ ⊢cf ψ.

18

Extensibility

The semantic approach is, arguably, more extensible.

The key points in the proof:

• Invertibility of certain rules w.r.t. ⊢cf .
• The resulting C is a BI algebra
• φ ∈ JφK ⊆ ⟨φ⟩

19

Extensibility

The semantic approach is, arguably, more extensible.

The key points in the proof:

• Invertibility of certain rules w.r.t. ⊢cf .

• The resulting C is a BI algebra
• φ ∈ JφK ⊆ ⟨φ⟩

19

Extensibility

The semantic approach is, arguably, more extensible.

The key points in the proof:

• Invertibility of certain rules w.r.t. ⊢cf .
• The resulting C is a BI algebra

• φ ∈ JφK ⊆ ⟨φ⟩

19

Extensibility

The semantic approach is, arguably, more extensible.

The key points in the proof:

• Invertibility of certain rules w.r.t. ⊢cf .
• The resulting C is a BI algebra
• φ ∈ JφK ⊆ ⟨φ⟩

19

Extensions

We consider two different types of extensions:

• BI + additional structural rules, e.g. affine BI

Π(∆) ⊢ φ

Π(∆ ,∆′) ⊢ φ

C is a BI algebra + some equations, e.g. p ∗ q ≤ p

• BI + □ modality: BI based on IS4
□L
∆(A) ⊢ B

∆(□A) ⊢ B

□R
□∆ ⊢ A

□∆ ⊢ □A

C is a BI algebra with a modal operator

20

Extensions

We consider two different types of extensions:

• BI + additional structural rules, e.g. affine BI

Π(∆) ⊢ φ

Π(∆ ,∆′) ⊢ φ

C is a BI algebra + some equations, e.g. p ∗ q ≤ p

• BI + □ modality: BI based on IS4
□L
∆(A) ⊢ B

∆(□A) ⊢ B

□R
□∆ ⊢ A

□∆ ⊢ □A

C is a BI algebra with a modal operator

20

Extensions

We consider two different types of extensions:

• BI + additional structural rules, e.g. affine BI

Π(∆) ⊢ φ

Π(∆ ,∆′) ⊢ φ

C is a BI algebra + some equations, e.g. p ∗ q ≤ p

• BI + □ modality: BI based on IS4
□L
∆(A) ⊢ B

∆(□A) ⊢ B

□R
□∆ ⊢ A

□∆ ⊢ □A

C is a BI algebra with a modal operator

20

Extensions

We consider two different types of extensions:

• BI + additional structural rules, e.g. affine BI

Π(∆) ⊢ φ

Π(∆ ,∆′) ⊢ φ

C is a BI algebra + some equations, e.g. p ∗ q ≤ p

• BI + □ modality: BI based on IS4
□L
∆(A) ⊢ B

∆(□A) ⊢ B

□R
□∆ ⊢ A

□∆ ⊢ □A

C is a BI algebra with a modal operator

20

Extensions (analytic structural rules)

An analytic structural rule is of the form

Π(T1[∆1, . . . ,∆n]) ⊢ φ . . . Π(Tm[∆1, . . . ,∆n]) ⊢ φ

Π(T [∆1, . . . ,∆n]) ⊢ φ

where T1, . . . , Tm, T are bunched terms – bunches built out of connectives ,, ;,
and variables x1, . . . , xn, and T is linear

Corresponds to the axiom:

JT K(p1, . . . , pn) ≤ JT1K(p1, . . . , pn) ∨ · · · ∨ JTmK(p1, . . . , pn).

21

Extensions (analytic structural rules)

An analytic structural rule is of the form

Π(T1[∆1, . . . ,∆n]) ⊢ φ . . . Π(Tm[∆1, . . . ,∆n]) ⊢ φ

Π(T [∆1, . . . ,∆n]) ⊢ φ

where T1, . . . , Tm, T are bunched terms – bunches built out of connectives ,, ;,
and variables x1, . . . , xn, and T is linear

Corresponds to the axiom:

JT K(p1, . . . , pn) ≤ JT1K(p1, . . . , pn) ∨ · · · ∨ JTmK(p1, . . . , pn).

21

Extensions (analytic structural rules)

How do we verify that

JT K(p1, . . . , pn) ≤ JT1K(p1, . . . , pn) ∨ · · · ∨ JTmK(p1, . . . , pn).

holds in the model C?

Proposition
For X1, X2, . . . , Xn ∈ C,

cl({T [∆1, . . . ,∆n] | ∆i ∈ Xi, 1 ≤ i ≤ n}) ⊆ JT K(X1, . . . , Xn).

And this becomes an equality when T is linear.

22

Analytic completion

Π(T1[∆1, . . . ,∆n]) ⊢ φ . . . Π(Tm[∆1, . . . ,∆n]) ⊢ φ

Π(T [∆1, . . . ,∆n]) ⊢ φ

What if T is not linear?

Then we can turn the above rule into an equivalent analytic rule.

23

Analytic completion

Π(T1[∆1, . . . ,∆n]) ⊢ φ . . . Π(Tm[∆1, . . . ,∆n]) ⊢ φ

Π(T [∆1, . . . ,∆n]) ⊢ φ

What if T is not linear?

Then we can turn the above rule into an equivalent analytic rule.

23

Analytic completion

Π(∆) ⊢ φ

Π(∆ ,∆) ⊢ φ

corresponds to p ∗ p ≤ p

⇒

Π(∆1) ⊢ φ Π(∆2) ⊢ φ

Π(∆1 ,∆2) ⊢ φ

corresponds to p1 ∗ p2 ≤ p1 ∨ p2

24

Analytic completion

Π(∆) ⊢ φ

Π(∆ ,∆) ⊢ φ

corresponds to p ∗ p ≤ p

⇒

Π(∆1) ⊢ φ Π(∆2) ⊢ φ

Π(∆1 ,∆2) ⊢ φ

corresponds to p1 ∗ p2 ≤ p1 ∨ p2

24

Analytic completion

Π(∆) ⊢ φ

Π(∆ ,∆) ⊢ φ

corresponds to p ∗ p ≤ p

⇒
Π(∆1) ⊢ φ Π(∆2) ⊢ φ

Π(∆1 ,∆2) ⊢ φ

corresponds to p1 ∗ p2 ≤ p1 ∨ p2

24

Analytic completion

Clearly p1 ∗ p2 ≤ p1 ∨ p2 implies p ∗ p ≤ p.

For the other way around:

p1 ∗ p2 ≤

(p1 ∨ p2) ∗ (p1 ∨ p2) ≤ p1 ∨ p2

.

25

Analytic completion

Clearly p1 ∗ p2 ≤ p1 ∨ p2 implies p ∗ p ≤ p.

For the other way around:

p1 ∗ p2 ≤ (p1 ∨ p2) ∗ (p1 ∨ p2) ≤

p1 ∨ p2

.

25

Analytic completion

Clearly p1 ∗ p2 ≤ p1 ∨ p2 implies p ∗ p ≤ p.

For the other way around:

p1 ∗ p2 ≤ (p1 ∨ p2) ∗ (p1 ∨ p2) ≤ p1 ∨ p2.

25

Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : }

• Extensive use of setoids and setoid rewriting, based on the typeclasses from
the stdpp library

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop

26

Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : }

• Extensive use of setoids and setoid rewriting, based on the typeclasses from
the stdpp library

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop

26

Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : }

• Extensive use of setoids and setoid rewriting, based on the typeclasses from
the stdpp library

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop

26

Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

• Good representation for C makes life easier

Record C := {
CPred :> Bunch → Prop;
CClosed : }

• Extensive use of setoids and setoid rewriting, based on the typeclasses from
the stdpp library

• Turn equations ∆ = ∆′(Γ) into inductive systems
Inductive bunch_decomp : bunch → bunch_ctx → bunch → Prop

26

Thank you

Thank you for your attention!

Let me know if you have questions, d.frumin@rug.nl.

27

mailto:d.frumin@rug.nl

