Semantic Cut Elimination for
the Logic of Bunched Implications and Structural Extensions

(as formalized in Coq)

Dan Frumin
Grolog, 13 Oct

What's in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

https://github.com/co-dan/BI-cutelim

What'’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

¢ Bl: a logic for reasoning about (separation of) resources.

https://github.com/co-dan/BI-cutelim

What'’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

e BI: a logic for reasoning about (separation of) resources.
e Cut elimination: a proof of - ¢ only includes subformulas of ¢.

https://github.com/co-dan/BI-cutelim

What'’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

e BI: a logic for reasoning about (separation of) resources.
e Cut elimination: a proof of - ¢ only includes subformulas of .

e Semantic proof: proof by interpreting syntax in a model.

https://github.com/co-dan/BI-cutelim

What'’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

e BI: a logic for reasoning about (separation of) resources.
e Cut elimination: a proof of - ¢ only includes subformulas of .
e Semantic proof: proof by interpreting syntax in a model.

e Structural extensions: extensions of the logic with certain axioms/rules.

https://github.com/co-dan/BI-cutelim

What'’s in the title?

Semantic cut elimination for the logic of Bunched Implications with structural
extensions, formalized in Coq.

e BI: a logic for reasoning about (separation of) resources.

Cut elimination: a proof of - ¢ only includes subformulas of .

e Semantic proof: proof by interpreting syntax in a model.

Structural extensions: extensions of the logic with certain axioms/rules.

Formalized in Coq: axiom-free formalization at

https://github.com/co-dan/BI-cutelim.

https://github.com/co-dan/BI-cutelim

The logic of Bunched Implications

Bl freely combines intuitionistic and linear connectives:

p, € Prop :=True |FRalse | p VY | oAV | p = ¢

The logic of Bunched Implications

Bl freely combines intuitionistic and linear connectives:

p, € Prop :=True |FRalse | p VY | oAV | p = ¢
|Emp | ox¢ | ¢ x9 H_\

[Intuitionistic logic}

The logic of Bunched Implications

Bl freely combines intuitionistic and linear connectives:

p, € Prop :=True |FRalse | p VY | oAV | p = ¢
[Emp | o*9p | ¢ ¢

[Linear logic (fragment)}

The logic of Bunched Implications

Bl freely combines intuitionistic and linear connectives:

p, € Prop :=True |FRalse | p VY | oAV | p = ¢
[Emp | o*9p | ¢ ¢

True Ay = ¢ oA (p—=Y) Y
Emp o= ¢ p*(p*P)

eANYE pEeANp
pexP /e el oxp

The logic of Bunched Implications

Bl freely combines intuitionistic and linear connectives:

p, € Prop :=True |FRalse | p VY | oAV | p = ¢
[Emp | o*9p | ¢ ¢

Proposition represent ownership of resources

The logic of Bunched Implications

Bl freely combines intuitionistic and linear connectives:

p, € Prop :=True |False | p VY | oAU | p = ¢
[Emp | o*9p | ¢ ¢

Proposition represent own%&&resoimth ¢ and ¢ hold for owned resources}

[cp and ¢ hold for separate/disjoint resources}

Bl has seen a lot of applications in CS, especially as a basis for program logics for
programs with arrays/dynamic memory

e /— v: the current state has the location Zin memory, and it stores the value v

e P x (: the current state can be divided into two disjoint parts, for which P
and @ hold respecively

Bl has seen a lot of applications in CS, especially as a basis for program logics for
programs with arrays/dynamic memory

e /— v: the current state has the location Zin memory, and it stores the value v

e P x (: the current state can be divided into two disjoint parts, for which P
and @ hold respecively

o /s vx{ +— v':the locations ¢ and ¢ do not alias each other

e /— v Al — ' aliasing is allowed

Bl has seen a lot of applications in CS, especially as a basis for program logics for
programs with arrays/dynamic memory

e /— v: the current state has the location Zin memory, and it stores the value v

e P x (: the current state can be divided into two disjoint parts, for which P
and @ hold respecively

o /s vx{ +— v':the locations ¢ and ¢ do not alias each other
e /— v Al — ' aliasing is allowed

® (1 (v1,0a) % by —> (v, €3) * -+ % Ly +—> (vp, €y) * £, — NULL:
a linked list without cycles

Sequent calculus

{Sequent: 'k gb}

T o9 F x ke Iy
CioApEx INH DS %W

Sequent calculus
[Left and right rules]—/_\

,wax ke Iy =9
CioApEx INH DS %W
I'T'Fx I'Fx

I'Fy T -y

Sequent calculus

[Structu ral rules]

CiosvkEx 'k Iy
Tip A F X rl;rzwlw
rsrtx I'Fx

'-x IsIVEx

Sequent calculus

Diles¥)Fx Nify Dby
Lo bx [y gTob @y
Dipswhx Sl L
LioNpEx ISR Rl WA
LyTkx I'-x

e T3 x

Sequent calculus

Ap ¢ 9) - x ' o Iy
Alp*) = x Iy ogToFxe
Alps) Fx e Iy
Alp A) = x LTy
ATST)Fx AT) Fx
AT) Fx AT ST x

[r:::mr;mr,m...j

Sequent calculus

Ay Aspkd
At o+ A=

* Sequent calculus for Bl externalizes A and « as different connectives: § and ,.
Only § admits weakening and contraction.

* Sequent calculus for Bl externalizes A and « as different connectives: § and ,.
Only § admits weakening and contraction.

e Because of that, contexts in the sequents are not lists/multisets, but trees
(referred to as bunches);

* Sequent calculus for Bl externalizes A and « as different connectives: § and ,.
Only § admits weakening and contraction.

e Because of that, contexts in the sequents are not lists/multisets, but trees
(referred to as bunches);

e Left rules can be applied deep inside an arbitrary bunched context.

Intuitions:

e ¢ is an “intermediate lemma”

CUT
A'F A F o
A(A)Fo

Intuitions:

e ¢ is an “intermediate lemma”

e provability relation is transitive

Cut elimination

Theorem
Everything that is provable, is also provable without the cut rule: - ¢ = F @

Cut elimination

Theorem
Everything that is provable, is also provable without the cut rule: - ¢ = F @

Why eliminate cut?

¢ makes the calculus analytical (subformula property): any derivation of o - ¢
only involves formula that are already present in ¢ and ¢

e important ingredient in the automated proof search toolbox

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

Ay 5 A F 9y Nipo A1 Ab2)
A(Al ; Ag) l— (2

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

))

Ay 5 A F 9y Nipo A1 Ab2)
A(Al ; Ag) l— (2

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating

measure:
Ay Az = 1ho A1 52) F o
A1 § Ay vy Apo Ay A2) =

A(A15Ag) F o

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

ArFir Agkah A §92) F
A1 § Ay vy Apo Ay A2) =
A(Al ; AQ) |— 2

Ar Ay §92) F o
Ag =19 A(Ar) F o
2 A(A1 5) o

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

A=y Ao = 1) ?

A1 § Ay vy Apo Ay A2) =
A(Al ;AQ) |— 2

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

A

A1k Ao = 1) A1 AN2) 5 01 F @2
Al;Agl—¢1/\w2 (1/\¢Q)|_(pl—>
A(A1 5 Ag) E 1 — 2

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

Ay Fn Ag o A1 Ah2) § 1 F 2
A3 As 1 Ao A1 Aba) o1 — 2
A(A1 5 A2) F 1 — w2

A1 5 As 11 Apa A1 Ah2) § o1 F 2
A(A1 5 Az) 501k @2
Y > A(Al ; Az) - ©1 — P2

10

Cut elimination

Usually proofs of cut elimination involve analysis by inversion + terminating
measure:

))

Ay 5 A F 9y Nipo A1 Ab2)
A(Al ; Ag) l— (2

D etc..

10

Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details

1"

Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details

e Well-foundedness/termination measures can get complicated

1"

Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details
e Well-foundedness/termination measures can get complicated

e Bl specific: the tree-like structure of bunches contribute to the complexity

"

Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details
e Well-foundedness/termination measures can get complicated

e Bl specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

"

Limitations of the direct-style proof

e There are a lot of cases to consider, with a lot of syntactic details
e Well-foundedness/termination measures can get complicated

e Bl specific: the tree-like structure of bunches contribute to the complexity

For these reason, non-formalized proofs of cut elimination can be fragile and are
known to be error-prone.

On the other hand, formalizing these kind of proofs can also be tough...

"

Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.

CEp = Fao

12

Semantic proof of cut elimination

A semantic proof of cut elimination goes through some “universal” model C and
the interpretation of sequent calculus in it.
CEe = Ftao

Bl algebra
A Bl algebra (C, <) consists of operations T, 1, V, A, —, Emp, %, — satisfying
various laws.

Soundness: p F v = [¢] < [¥].

12

Intuition: Lindenbaum-Tarski algebra for completeness

Define [¢] = {¢ | ¢ 49}, and [p] <, [y] <= o F .

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [¢] = {¢ | ¢ 49}, and [p] <, [y] <= o F .

o L ={[¢] | ¢ € Frml} with <. is a Bl algebra;
e Main property of £L: [¢] = [¢]-

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [¢] = {¢ | ¢ 49}, and [p] <, [y] <= o F .

o L ={[¢] | ¢ € Frml} with <. is a Bl algebra;
e Main property of £L: [¢] = [¢]-
e Completeness: suppose ¢ |= 9.

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [¢] = {¢ | ¢ 49}, and [p] <, [y] <= o F .

o L ={[¢] | ¢ € Frml} with <. is a Bl algebra;
e Main property of £L: [¢] = [¢]-
e Completeness: suppose ¢ |= 9.

* In particular: [o] < [¢], i-e. [¢] <z [¥];

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [¢] = {¢ | ¢ 49}, and [p] <, [y] <= o F .

o L ={[¢] | ¢ € Frml} with <. is a Bl algebra;
e Main property of £L: [¢] = [¢]-
e Completeness: suppose ¢ |= 9.

e In particular: [¢] <. [¢¥], i.e. [¢] <z [¥];
e Conclusion: ¢ 1.

13

Intuition: Lindenbaum-Tarski algebra for completeness

Define [¢] = {¢ | ¢ 49}, and [p] <, [y] <= o F .

o L ={[¢] | ¢ € Frml} with <. is a Bl algebra;
e Main property of £L: [¢] = [¢]-
e Completeness: suppose ¢ |= 9.

e In particular: [¢] <. [¢¥], i.e. [¢] <z [¥];
e Conclusion: ¢ 1.

e The “real” work is to show that £ is indeed a model.

13

What if we use - instead of - in the definition of £?

14

What if we use - instead of - in the definition of £?

Need transitivity of <: [p] < [¢] < [x] = [¢] < [x]?

14

What if we use - instead of - in the definition of £?

Need transitivity of <: [p] < [¢] < [x] = [¢] < [x]?

R

[Same as cut elimination: p b ¥ Fof ¥ = 0 bof X]

14

Attempted solution: use sets of predecessors.

(@) = {A | At o} € p(Bunch),

with the subset inclusion relation.

15

Attempted solution: use sets of predecessors.

(@) = {A | At o} € p(Bunch),
with the subset inclusion relation.

Note that ¢ € (). Hence, () C (1)) implies

€ (V) = prg .

15

Attempted solution: use sets of predecessors.

(o he p)p) = {A | Abcr ¢} € p(Bunch),

with the subsef,’wrdﬂsion relation.

Note that ¢ € (). Hence, () C (1)) implies

€ (V) = prg .

15

IsC = ({{¢) | ¢ € Frml}, C) a Bl algebra?

16

IsC = ({{¢) | ¢ € Frml}, C) a Bl algebra?
Not closed under U, N... Cannot inherit the algebra structure from p(Bunch).

For example, (¢ V 9) € (¢ V 9), but does (¢ Vv ¢) belong to (p) U (1)?

16

IsC = ({{¢) | ¢ € Frml}, C) a Bl algebra?

Not closed under U, N... Cannot inherit the algebra structure from p(Bunch).
For example, (¢ V 9) € (¢ V 9), but does (¢ Vv ¢) belong to (p) U (1)?
Solution: “the next best thing”

() Vi)=Y ecCllpu) cY)

e

[The smallest set in C containing (y) U (¢>j

16

Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:

C={(){:) | I arbitrary set, o; € Frml} € p(Bunch)
el

cl(—) : p(Bunch) — C
c(X) = ({{e) | X S

17

Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:
C={(){:) | I arbitrary set, o; € Frml} € p(Bunch)
el
[The smallest set in C containing Xj
cI(—) : p(Bunch) — C

=[N | X C(p

17

Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:
C= {ﬂ((pﬁ | I arbitrary set, p; € Frml} C p(Bunch)
iel
cl(=) : p(Bunch) — C
d(X) = (e | X S ()}
Proposition
If X e Cwith Aq,...,A, € X and
A F o .. ApF o
A

without the use of the cut rule, then A’ € X. 17

Attempt 3.5 (successful and final)

Solution: close under arbitrary intersections:

C= {ﬂ((pﬁ | I arbitrary set, p; € Frml} C p(Bunch)
iel

cl(=) : p(Bunch) — C

cd(X) = [{() | X C ()}
Lift operations to C:
XAY =XNY X-sY={A|VA eX.(AjA)eY}
XVY =c(XUY)
X+xY =c({A1 9 Ay |A1€eX,A0€Y}) XY ={A|VA' €X. (AyA)eY}
Proposition

C is a Bl algebra .

Fundamental property

Fundamental property
v € [¢] € ()

Proof by induction on ¢.

18

Fundamental property

Fundamental property
v € [¢] € ()

Proof by induction on ¢.

Cut elimination
oY = plkg

If o 1, then [¢] C [4]-
If[] € [¢], then ¢ € o] € [9] € (¥) = ¢ Fer ¢

18

Extensibility

The semantic approach is, arguably, more extensible.

19

The semantic approach is, arguably, more extensible.

The key points in the proof:

e |nvertibility of certain rules w.r.t. .

19

The semantic approach is, arguably, more extensible.

The key points in the proof:

e |nvertibility of certain rules w.r.t. .
e The resulting C is a Bl algebra

19

The semantic approach is, arguably, more extensible.

The key points in the proof:

e |nvertibility of certain rules w.r.t. .
e The resulting C is a Bl algebra

* p € gl € (v

19

We consider two different types of extensions:

20

We consider two different types of extensions:
e Bl + additional structural rules, e.g. affine Bl
II(A)F o
A) AN F

C is a Bl algebra + some equations, e.g. pxq < p

20

We consider two different types of extensions:
e Bl + additional structural rules, e.g. affine Bl
II(A)F o
A) AN F

C is a Bl algebra + some equations, e.g. pxq < p

20

We consider two different types of extensions:
e Bl + additional structural rules, e.g. affine Bl
I(A) ¢
A) AN F
C is a Bl algebra + some equations, e.g. pxq < p
e Bl + [modality: Bl based on IS4

L LR
A(A)F B OAF A
A(OA)+ B OAF DA

C is a Bl algebra with a modal operator

20

Extensions (analytic structural rules)

An analytic structural rule is of the form

I(Th[Aq, ..., AR F o (T [AL, .., A F o

where T1, ..., T,,, T are bunched terms - bunches built out of connectives ,, 3,
and variables z1,...,z,, and T is linear

21

Extensions (analytic structural rules)

An analytic structural rule is of the form

I(Th[Aq, ..., AR F o (T [AL, .., A F o

where T1, ..., T,,, T are bunched terms - bunches built out of connectives ,, 3,
and variables z1,...,z,, and T is linear

Corresponds to the axiom:

[[T]](ph e 7pn) S [[Tl]](ply cee apn) \ARERY [[Tm]](pla fee 7pn>-

21

Extensions (analytic structural rules)

How do we verify that

[T1(p1,- - on) < [M1)(P1s- -, 00) V- V [Tl (p1, - - - s Pn)-

holds in the model C?
Proposition
For X1, Xo,..., X,, €C,

C|({T[A1,...,An] ‘ A€ X;,1<i< n}) - [[T]](Xl,. . .,Xn).

And this becomes an equality when 7' is linear.

22

Analytic completion

What if T is not linear?

23

Analytic completion

I(T[A1, ..., An)) F ¢

What if T is not linear?

Then we can turn the above rule into an equivalent analytic rule.

23

Analytic completion

H(A) F o
II(A g A) F o

correspondstop*xp <p

24

Analytic completion

H(A) F o
II(A g A) F o

correspondstop*xp <p

II(A1 9 As) F o

24

Analytic completion

I(A) o
II(A g A) F o
correspondstop*xp <p
=
IA)Fe (A ko

II(A1 9 As) F o

corresponds to py * po < p1 V po

24

Analytic completion

Clearly py * ps < p1 V po implies p*p < p.

For the other way around:

p1xp2 <

25

Analytic completion

Clearly py * ps < p1 V po implies p*p < p.

For the other way around:

p1xp2 < (p1Vp2)* (p1Vpe) <

25

Analytic completion

Clearly py * ps < p1 V po implies p*p < p.

For the other way around:

p1*p2 < (p1Vp2)* (p1Vp2) <p1Vpa.

25

Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

26

Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

e Good representation for C makes life easier

Record C := {
CPred :> Bunch — Prop;
CClosed : }

26

Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

e Good representation for C makes life easier

Record C := {
CPred :> Bunch — Prop;
CClosed : }

e Extensive use of setoids and setoid rewriting, based on the typeclasses from
the stdpp library

26

Reflecting on the formalization

Coq formalization, ~1090 lines specs and ~3600 lines proof

e Good representation for C makes life easier

Record C := {
CPred :> Bunch — Prop;

CClosed : 7}

e Extensive use of setoids and setoid rewriting, based on the typeclasses from

the stdpp library

e Turn equations A = A’(T") into inductive systems

Inductive bunch_decomp : bunch — bunch_ctx — bunch — Prop

26

Thank you for your attention!

Let me know if you have questions, d.frumin@rug.nl.

27

mailto:d.frumin@rug.nl

