
CATEGORICAL MODELS OF TYPE THEORY

AUKE BOOIJ AND DANIIL FRUMIN

Contents

1. Introduction 1
1.1. Soundness and completeness of models 2
2. Categories with families 2
2.1. Category of contexts 2
2.2. Categories with families 3
2.3. Terms and sections 4
2.4. Interpreting types 5
2.5. Example 1: the truth-valued model 8
2.6. Example 2: the term model 9
2.7. Example 3: Set-theoretic model 10
2.8. Example 4: CwF from a presheaf category 11
3. Soundness and completeness 12
3.1. Definition of interpretation functions 13
3.2. Completeness 13
3.3. Soundness 13
4. Other models 14
4.1. The groupoid model 14
4.2. Cubical sets 17
5. Going further 19
References 20

1. Introduction

In type theory, theorems are interpreted by types, and proofs of theorems are
interpreted as elements of those theorems. Hence, in this logical view, we prove
theorems of type theory by finding elements of certain types. Now dependent type
theories can be very expressive, and in particular interpret Peano Arithmetic (PA).
Hence, we can apply Gödel’s first incompleteness theorem to deduce that there must
be a “logical sentence” (namely a type) G such that neither G nor ¬G = G → 0 is
inhabited.

More generally, a book on the theory of dependent type theory, such as the
Homotopy Type Theory book [13], teaches nothing about the proof strength of
dependent type theories. For example, it was only the introduction of univalence
axioms that introduced provable existence of nontrivial elements of the identity
type.

Date: June 2015.

1

2 AUKE BOOIJ AND DANIIL FRUMIN

Hence, we might wonder if, just as in classical logic, there exists a framework for
proving that certain types are uninhabited. This is the topic of this essay.

We will see that there is such a notion (in fact, several!), and we will apply them
to prove the independence of notions.

For illustrative purposes, we will prove that in dependent type theory with nat-
ural numbers but without universes, we cannot prove the third Peano axiom, that
states that 0 ̸= 1 (see subsection 2.5). We will also look at the groupoid model
in subsection 4.1, that showed that the existence of nontrivial identity terms is
independent of plain dependent type theory (i.e. with universes).

1.1. Soundness and completeness of models. In classical logic (e.g. first-order
logic), the framework for proving independence of logical claims is given by models:
we find two models of a fixed theory T , one in which a sentence ϕ is true, and one
in which φ is false (i.e. ¬ϕ is true).

Now suppose that we have those. Then recall that the soundness theorem for
first-order logic states that if a logical sentence is provable in a theory T , then in
fact it is true in every model that makes all sentences of T true.

Hence, if φ were provable, then the fact that we have a model in which it is false
contradicts the provability of φ. The fact that we also have a model in which it is
true now gives us that φ must be independent of T .

Now a result for models of first-order logic that is typically seen as more in-
teresting (but, as per the above, not more important per se) is the completeness
theorem. This gives the converse to soundness: if a sentence φ is true in all models
of a theory T , then φ itself is provable from T .

In the models of type theory that we will study, the completeness result will be
a very easy result: it follows from a syntactic model of type theory that models
exactly those things that are provable. In fact, soundness is now a somewhat
nontrivial result. We will discuss these results later in section 3.

2. Categories with families

To define our notion of model, we let ourselves be inspired by the syntactic side
of things. This link is made more precise in subsection 2.6.

2.1. Category of contexts. One early “naive” notion of models of type theory
is given by a category C of contexts and context morphisms. In the syntactical
(“theoretical”) side of this, we have that substitutions represent context morphisms.

Given such a category, we will want to have a mechanism that, given a context
Γ and a type σ in Γ, gives an extended context Γ.σ. Syntactically, this would
be represented by extending the list of types by x : σ, yielding Γ, x : σ. Also,
syntactically, context extensions of Γ correspond bijectively with “basic projection
morphisms” p(σ) : Γ.σ → Γ to Γ. So define a naive model of type theory to be
a category C together with a set of morphisms B that are thought of as basic
dependent projections. We write morphisms f : Θ → Γ in B as p(σ) : Γ.σ → Γ
where Γ is the codomain of f and σ is an arbitrary symbol, thought of as the type
specified by f .

In the syntactic case, the terms of type σ in a given context Γ correspond bijec-
tively to sections of p(σ). By analogy with this, we can define semantic terms in a
fixed context Γ to be the set of sections of the projection morphism p(σ) : Γ.σ → Γ.

CATEGORICAL MODELS OF TYPE THEORY 3

We can hope to interpret type theory in naive models of type theory in this
way, but unfortunately we get degeneracy issues: we require more properties on
the model to be able to prove a soundness theorem (we will see later exactly what
soundness means for type theory).

More specifically, suppose that we have a context morphism f : Γ → ∆, and that
we have a type σ in the context ∆ (represented by a basic dependent projection
p(σ)). Then we would like to extend f between the contexts that are extended by
σ. In other words, we would like to find f ′ in the pullback square

Γ′ ∆.σ

Γ ∆

p

f ′

p(σ)

f

such that p becomes a basic dependent projection. However, purely from categorical
notions, we cannot uniquely find Γ′, even if C has pullbacks, since limits in categories
are only given up to isomorphism.

2.2. Categories with families. We solve this issue by working with explicit as-
sociations of sets of types to contexts, and sets of terms to types in contexts. This
allows us to specify substitution principles for types and terms explicitly, so that
substituted types and terms are unique.

More precisely, a category with families (CwF) [4, 6] is specified by the following
data:

C: is the category of contexts and context morphisms with a fixed terminal
object ⊤

Ty and Tm: give the types in a context and the terms in a type (e.g. N ∈
Ty(Γ) and suc(0) ∈ Tm(Γ,N))

–{–}: gives substitutions: for f : Γ → ∆ in C we have –{f} : Ty(∆) → Ty(Γ)
and –{f} : Tm(∆, A) → Tm(Γ, A{f})

⟨⟩–: gives the unique morphism ⟨⟩Γ : Γ → ⊤ to the empty context ⊤ ∈ C
–.–: is context extension, giving for each context Γ ∈ ob C and each σ ∈ Ty(Γ)

a new context Γ.σ
p: projects away the last type, so p(Γ.σ) : Γ.σ → Γ in C (where the Γ param-

eter can be either implicit or explicit, so p(σ) = p(Γ.σ))
v–: is the other projection: for each σ ∈ Ty(Γ) it gives a term vσ with vσ ∈

Tm(Γ.σ, σ{p(σ)})
⟨–,–⟩–: is a context morphism extension: if f : Γ → ∆ and M ∈ Tm(Γ, σ{f})

then ⟨f,M⟩σ : Γ → ∆.σ

that satisfies certain sanity conditions. Morally, the only reason we require these
conditions is that we want to arrive at a notion of models of type theory that is, on
the one hand, sufficiently rich (i.e. allows nontrivial models that we can use to show
e.g. independence), but, on the other hand, is sound for type theory (as we require
a soundness theorem for such independence results). However, we can certainly
verify that the laws below are indeed satisfied in the syntactic case, and this is the
motivation for this specific choice of laws.

Specifically, if

• Γ,∆,Θ ∈ ob C
• f : Γ → ∆ and g : ∆ → Θ

4 AUKE BOOIJ AND DANIIL FRUMIN

• σ ∈ Ty(Θ)
• M ∈ Tm(Θ, σ)
• N ∈ Tm(∆, σ{g})

then we require that

σ{idΘ} = σ ∈ Ty(Θ)

σ{g ◦ f} = σ{g}{f} ∈ Ty(Γ)

M{idΘ} = M ∈ Tm(Θ, σ)

M{g ◦ f} = M{g}{f} ∈ Tm(Γ, σ{g ◦ f})
p(Θ.σ) ◦ ⟨g,N⟩σ = g : ∆ → Θ

vσ{⟨g,N⟩σ} = N ∈ Tm(∆, σ{g})
⟨g,N⟩σ ◦ f = ⟨g ◦ f,N{f}⟩σ : Γ → Θ.σ

⟨p(Θ.σ), vσ⟩σ = idΘ.σ : Θ.σ → Θ.σ

From the given laws it can be seen that Ty is a presheaf over C, with Ty(f :
A → B) defined as –{f} : Ty(B) → Ty(A).

We also refer to a given CwF by referring to its category of contexts C, leaving
the remaining structure implicit.

The above definition of Categories with Families tells us how to semantically
interpret contexts and substitutions. However, to even be able to state a sound-
ness theorem, we need to know what it means to interpret types and terms. We
will discuss this in subsection 2.4, but first we will look at a few technicalities sur-
rounding context morphisms and its interaction with terms: namely, how we can
weaken context morphisms to act on larger contexts, and how context morphisms
can represent terms.

2.3. Terms and sections. Given a termM ∈ Tm(Γ, σ), we can construct a section
of p(Γ.σ), given by1

M = ⟨idΓ,M⟩ : Γ → Γ.σ

Given the interplay of p and ⟨−,−⟩, it is easy to see that M is indeed a section.
Conversely, given a section s of p(Γ.σ), we can construct a term

vσ{s} ∈ Tm(Γ.σ, σ{p(σ)}){s} = Tm(Γ, σ{p(σ)}{s})
= Tm(Γ, σ{p(σ) ◦ s})
= Tm(Γ, σ{idΓ})
= Tm(Γ, σ)

Furthermore, the two aforementioned operations are inverses of each other:

vσ{M} = M

1When unambiguous, we drop the last argument to ⟨–, –⟩–, writing ⟨idΓ,M⟩ instead of

⟨idΓ,M⟩σ

CATEGORICAL MODELS OF TYPE THEORY 5

vσ{s} = ⟨idΓ, vσ{s}⟩ = ⟨p(σ) ◦ s, vσ{s}⟩
= ⟨p(σ), vσ⟩ ◦ s
= idΓ.σ ◦s = s

It follows that we can identify terms and sections; sometimes, abusing the nota-
tion, we will speak of terms as if they were sections and vice versa.

2.4. Interpreting types. Establishing that a category C has a structure of a cat-
egory with families is not enough to start interpreting type theory inside C. After
all, we need to know how to interpret specific type formers. The requirements for
a CwF to support certain types are closely related to the syntactic rules for said
types.

A crucial definition that is used throughout this section is the one of weakening:
Given a context morphism f : Γ → ∆ and a type σ ∈ Ty(∆), we can weaken f

by σ, and obtain a morphism q(f, σ) : Γ.σ{f} → ∆.σ. The weakening is defined as

q(f, σ) = ⟨f ◦ p(σ{f}), vσ{f}⟩σ

This morphism also makes the following square a pullback:

Γ.σ{f} ∆.σ

Γ ∆

p(σ{f})

q(f,σ)

p(σ)

f

Thus we reobtain the notion of pullback as a substitution operation.

2.4.1. Π types. Consider the Π-types. The requirements for the CwF to support
Π-types (just like for any times) can be divided into several groups: formation,
introduction, and elimination.

A CwF supports Π-types if for any context Γ and for any two types σ ∈ Ty(Γ),
and τ ∈ Ty(Γ.σ)

(1) There is a type Π(σ, τ) ∈ Ty(Γ)
(2) For any M ∈ Tm(Γ.σ, τ), there is a term (λσ,τ)(M) ∈ Tm(Γ,Π(σ, τ))
(3) There is a morphism Appσ,τ : Γ.σ.Π(σ, τ){p(σ)} → Γ.σ.τ , such that

p(Γ.σ.τ) ◦Appσ,τ = p(Γ.σ.Π(σ, τ))

(i.e. App preserves the initial part of the context), and

Appσ,τ ◦ (λσ,τ (M)){p(Γ.σ)} = M

for any M ∈ Tm(Γ.σ, τ) (the computation rule)
(4) All of the aforementioned constructs are stable under substitutions

The last point requires a bit of elaboration. We will show how to derive the
“stability” laws using the Π type former as an example.

6 AUKE BOOIJ AND DANIIL FRUMIN

Suppose there is a morphism f : ∆ → Γ, and a type Π(σ, τ) ∈ Ty(Γ). So we
have the diagram:

Γ.Π(σ, τ)

∆ Γ

p(Π(σ,τ))

f

It follows that σ ∈ Ty(Γ) and τ ∈ Ty(Γ.σ). We have two ways of pulling back
Π(σ, τ) along f . First of all, we can just pull the whole type back:

∆.Π(σ, τ){f} Γ.Π(σ, τ)

∆ Γ

p(Π(σ,τ){f})

q(f,Π(σ,τ))

p(Π(σ,τ))

f

Secondly, we can pull back the constituents of the Π type — σ and τ — and
then put them back together using the Π type constructor:

∆.σ{f}.τ{q(f, σ)} Γ.σ.τ

∆.σ{f} Γ.σ

∆ Γ

p(τ{q(f,σ)})

q(q(f,σ),τ)

p(τ)

p(σ{f})

q(f,σ)

p(σ)

f

yielding the types

σ{f} ∈ Ty(∆)

hence τ{q(f, σ)} ∈ Ty(∆.σ{f})
finally giving Π(σ{f}, τ{q(f, σ)}) ∈ Ty(∆)

The “stability” law states that those two ways of obtaining a Π type over ∆ are
equivalent:

Π(σ, τ){f} = Π(σ{f}, τ{q(f, σ)})

Further down the text we will not work out all of the details for other stabil-
ity laws, but we will merely state them. An interested reader can reproduce the
diagrams that lead to the specific laws.

The stability under substitutions are also required for λ and App:

(1) (λσ,τ)(M){f} = (λσ{f},τ{q(f,σ)})(M{q(f, σ)})
(2) Appσ,τ ◦ q(q(f, σ),Π(σ, τ){p(σ)}) = q(q(f, σ), τ) ◦Appσ{f},τ{q(f,σ)}

The App substitution stability laws expresses the commutativity of the penulti-
mate upper square in the following diagram:

CATEGORICAL MODELS OF TYPE THEORY 7

∆.σ{f} Γ.σ

∆.σ{f}.τ{q(f, σ)} Γ.σ.τ

∆.σ{f}.Π(σ{f}, τ{q(f, σ)}){p(σ{f})} Γ.σ.Π(σ, τ){p(σ)}

∆.σ{f} Γ.σ

∆ Γ

q(f,σ)

p(τ{q(f,σ)})
q(q(f,σ),τ)

p(τ)

Appσ{f},τ{q(f,σ)}

q(q(f,σ),Π(σ,τ){p(σ)})

p p

Appσ,τ

q(f,σ)

p(σ{f}) p(σ)

f

The diagram makes sense because the equation

∆.σ{f}.Π(σ{f}, τ{q(f, σ)}){p(σ{f})} = ∆.σ{f}.Π(σ, τ){p(σ) ◦ q(f, a)}
holds by the stability of Π under substitutions.

2.4.2. Σ types. A CwF supports Σ types if for any context Γ and for any two types
σ ∈ Ty(Γ), and τ ∈ Ty(Γ.σ)

(1) There is a type Σ(σ, τ) ∈ Ty(Γ)
(2) There is a morphism Pairσ,τ : Γ.σ.τ → Γ.Σ(σ, τ), such that

p(Σ(σ, τ)) ◦ Pairσ,τ = p(σ) ◦ p(τ)
(3) For every ρ ∈ Ty(Γ.Σ(σ, τ)) and H ∈ Tm(Γ.σ.τ, ρ{Pairσ,τ}) there is a term

RΣ(H) ∈ Tm(Γ.Σ(σ, τ), ρ) such that

RΣ(H){Pairσ,τ} = H

and for any morphism f : ∆ → Γ

(1) Σ(σ, τ){f} = Σ(σ{f}, τq(f, σ))
(2) q(f,Σ(σ, τ)) ◦ Pairσ{f},τq(f,σ) = Pairσ,τ ◦ q(q(f, σ), τ)

2.4.3. Empty type. A CwF supports Σ types if for any context Γ,

(1) There is a type 0 ∈ Ty(Γ), such that 0{f} = 0
(2) Since the theory has no constructors for 0, we have no requirements on the

existence of terms of type 0.
(3) For any ρ ∈ Ty(Γ.0), there is a term R0

ρ ∈ Tm(Γ.0, ρ).

2.4.4. Unit type. A CwF supports the unit type if for any context Γ,

(1) There is a type 1 ∈ Ty(Γ), such that 1{f} = 1
(2) There is a morphism ∗ : Γ → Γ.1, such that p(1) ◦ ∗ = idΓ
(3) For any ρ ∈ Ty(Γ.1), there is a term R1

ρ : Tm(Γ, ρ{∗}) → Tm(Γ.1, ρ), such
that

R1
ρ(H){∗} = H

for H ∈ Tm(Γ, ρ{∗}).

8 AUKE BOOIJ AND DANIIL FRUMIN

2.4.5. Identity types. A CwF supports identity types if for any context Γ, and for
a type A ∈ Ty(Γ),

• There is a type IdA ∈ Ty(Γ.A.A{p(A)}), that is stable under substitutions,
i.e. if f : ∆ → Γ is a morphism, then

IdA{q(q(f,A), A{p(A)})} = IdA{f}

• There is a morphism ReflA : Γ.A → Γ.A.A{p(A)}.IdA, such that

p(IdA) ◦ ReflA = vσ

and Refl respects substitution
• For every τ ∈ Ty(Γ.A.A{p(A)}.IdA) and H ∈ Tm(Γ.A, τ{ReflA}), there is
a term RId(H) ∈ Tm(Γ.A.A{p(A)}, τ) such that

– RId(H){Refl} = H
– q(q(q(f,A), A{p(A)}), IdA) ◦ ReflA{f} = ReflA ◦ q(f,A)

2.4.6. Natural numbers. A CwF supports natural numbers if for any context Γ,

(1) There is a type N ∈ Ty(Γ), that is stable under substitutions (i.e. N{f} =
N);

(2) There are morphisms O : Γ → Γ.N and S : Γ.N → Γ.N, such that

p(Γ.N) ◦O = idΓ
p(Γ.N) ◦ S = p(Γ.N)

(3) For each τ ∈ Ty(Γ.N), there is a term

RN
τ : Tm(Γ, τ{O}) → Tm(Γ.N.τ, τ{S ◦ p(Γ.N.τ)}) → Tm(Γ.N, τ)

such that {
RN

τ (P,Q){O} = P

RN
τ (P,Q){S} = Q{RN

τ (P,Q)}

For P ∈ Tm(Γ, τ{O}), Q ∈ Tm(Γ.N.τ, τ{S ◦ p(Γ.N.τ)}).

2.5. Example 1: the truth-valued model. In the presense of universes, we can
show 0 ̸= 1 to be true in the following way.

(1) Define a type family F : N → U by induction on N such that F (0) ≡ 1
and F (suc(x)) ≡ 0.

(2) Assuming a path p : 0 = 1 we can transport ∗ : 1 ≡ F (0) along p to get
p∗(∗) : F (1) ≡ 0.

Hence, in a dependent type theory with natural numbers and universes, it is
provable that 0 ̸= 1. However, in a type theory without universes, this result is not
provable, and hence the provability of 0 ̸= 1 is independent of such type theory.
We will show this by defining the truth-valued model.

2.5.1. Category B2. Consider a poset {ff, tt} with ff ≤ tt as a category. This category,
containing two objects and three morphisms will be denoted as B2. Curiously, this
category exhibits a CwF structure.

• tt is a terminal object;
• For each Γ ∈ B2, Ty(Γ) = {ff, tt};

CATEGORICAL MODELS OF TYPE THEORY 9

Type Interpretation

Π(A,B) A → B (Heyting implication)
Σ(A,B) A ∧B

IdA tt
N tt
0 ff

Table 1. Interpretation of type formers in the truth-valued model

• For each Γ ∈ B2, A ∈ Ty(Γ), Tm(Γ, A) =

{
{∗} if Γ ≤ A

∅ otherwise

• For each Γ ∈ B2, A ∈ Ty(Γ), Γ.A = Γ ∧A (conjunction/meet)

2.5.2. Interpreting types. The interpretation of type formers is given in Table 1. It
is straightforward to check that B2 satisfies all the required laws.

Reader may notice, that the CwF and type formers strucutre on B2 is defined in
a way that is readily generalizable: in fact, the same definitions would work for any
Heyting algebra, not just for two-element algebra. Thus, the models of Martin-Löf
type theory are at least as rich as models of first-order intuitionistic logic.

2.5.3. Application: Independence of the third Peano axiom. The third Peano axiom
states that ¬(0 = 1). In the language of type theory it corresponds to the judgment

⊢ IdN(0, suc(0)) → 0 true

However, the type IdN(0, suc(0)) → 0 is not inhabited in B2. One way to see
that would be two consider the elements of N under the empty context: Tm(tt,N).
There is only one such element, namely ∗. In general, judgments of the form
p : IdA(a, b) ⊢ t(p) : 0 are not valid in B2, because the proofs t(p) of 0 in such
judgments correspond to the elements of the set Tm(IdA{⟨ā, b⟩},0), which is empty
in all non-trivial Heyting algebras, since tt ̸≤ ff.

From this, and completeness of MLTT w.r.t. CwFs, it follows that the third
Peano axiom is not dervable in MLTT without universes.

2.6. Example 2: the term model. A model of particular importance is the
term model. It can be seen as a completely “syntactic” model of type theory, whose
contexts, types and terms are exactly those syntactic objects we can prove to be
valid contexts, types and terms.

More precisely, the category of contexts is given by comma-separated lists Γ of
typed variables with the property that ⊢ Γ ctxt, where we identify such contexts
Γ and ∆ iff ⊢ Γ = ∆ ctxt. Morphisms between contexts Γ and ∆ are syntactic
morphisms from Γ to ∆: so they are typed lists of expressions f such that Γ ⊢
f =⇒ ∆. We identify f, g : Γ → ∆ iff Γ ⊢ f = g =⇒ ∆.

Given such a context Γ, we define Ty(Γ) to be those expressions σ such that
Γ ⊢ σ type. Again, we quotient out definitional equality in the sense that we
identify σ, τ ∈ Ty(Γ) iff Γ ⊢ σ = τ type. Given a context Γ and a type σ, the set
of terms Tm(Γ, σ) is the set of equivalence classe (given by definitional equality) of
syntactic terms M of type σ in context Γ.

Context extension is given syntactically: if ⊢ Γ ctxt and Γ ⊢ σ type, then Γ is a
list of typed variables (x1 : X1, . . . , xn : Xn), and we define Γ.σ to be the context

10 AUKE BOOIJ AND DANIIL FRUMIN

(x1 : X1, . . . , xn : Xn, a : σ), where a is a fresh variable (i.e. not occurring elsewhere
in Γ).

All other structure follows similarly.

We use this model to prove completeness of our notion of models of type theory
with respect to the theory. This is described further in subsection 3.2.

2.7. Example 3: Set-theoretic model. In the set-theoretic model, the underly-
ing category C is the category of sets Set. For each set Γ, elements of Ty(Γ) are
families of sets: {σγ}γ∈Γ. Elements of Tm(Γ, {σγ}γ∈Γ) are “dependent functions”
M , namely, an element of the cartesian product Πγ∈Γσγ , that assigns to γ ∈ Γ an
element of σγ .

The substitution operates on types as follows: if f : ∆ → Γ is a substitution,
then

{σδ}δ∈∆{f} := {σf(δ)}δ∈∆

If M ∈ Tm(Γ, σ), then M{f}(δ) := M(f(δ)).
If σ ∈ Ty(Γ), then the context comprehension is defined as

Γ.σ = {(γ, x) | γ ∈ Γ, x ∈ σγ}

In other words, as the disjoint union Γ.δ = ⊔γσγ . The projections p and v are
defined as the first and the second projections, respectively:

p(Γ.σ)(γ, x) = γ

vΓ.σ(γ, x) = x

(This “typechecks” because vΓ.σ(γ, x) ∈ σ(γ,x){p(σ)} and σ(γ,x){p(σ)} = σγ .)
If f : Γ → ∆ is a morphism, and M is a term in Tm(Γ, σ{f}), the extension of

f is defined as ⟨f,M⟩(γ) = (f(γ),M(γ)).

Γ.σ{f} ∆.σ

Γ ∆

p(σ)

f

M̄
⟨f,M⟩

Given a set Γ, a type A ∈ Ty(Γ) and B ∈ Ty(Γ.A) the set theoretic model
supports Σ-types with the following definitions:

• Σ(A,B)γ = {(x, y) | x ∈ Aγ , y ∈ B(γ,x)}
• PairA,B(γ, a, b) = (γ, (a, b))
• Given τ ∈ Ty(Γ.Σ(A,B)) and H ∈ Tm(Γ.A.B, τ{Pair}), the term RΣ(H)
is defined as RΣ(H)(γ, (a, b)) = H(γ, a, b)

Given A ∈ Ty(Γ), the set-theoretic model supports identity types with

• (IdA)(γ,x,y) =

{
{∗} if x = y

∅ otherwise

• ReflA(γ, x) = (γ, x, x, ∗)
• Given τ ∈ Ty(Γ.A.A.IdA), and H ∈ Tm(Γ.A, τ{Refl}), the recursor is
defined as R(H)(γ, x, y, p) = H(γ, x). (Note: this definition works because
p can only be ∗ — in that case x and y are metatheoretically equal)

CATEGORICAL MODELS OF TYPE THEORY 11

2.8. Example 4: CwF from a presheaf category. Given a category C, we can
assign a CwF structure to Ĉ (the category of presheaves over C).

In Ĉ, the contexts are presheaves, i.e. functors Cop → Set, and the substitutions
are natural transformations. The empty context is given by a terminal presheaf ⊤:
a constant singleton ⊤(x) = {∗}.

For a presheaf Γ ∈ Ĉ we define Ty(Γ) to be the collection of presheaves over
∫
(Γ),

i.e. presheaves over a category of elements for Γ. If f : ∆ → Γ, and A ∈ Ty(Γ),
then we put A{f} = A ◦

∫
(f) ∈ Ty(∆). From the fact that

∫
(–) is functorial, it is

clear that Ty(–) follows all the necessary laws.
Next we define terms. Given a context Γ and a type A ∈ Ty(Γ), a term M ∈

Tm(Γ, A) is given by

• For each I ∈ C and a ∈ Γ(I) an object M(a) ∈ A(I, a);
• For each I, J ∈ C, u : J → I, a ∈ Γ(I),

M(Γ(u)(a)) = A(u)(M(a))

Given a context Γ and a type A ∈ Ty(Γ), we define Γ.A as:

Γ.A(I) = {(a, x) | a ∈ Γ(I), x ∈ A(I, a)} (on objects)

Γ.A(u : J → I)(a, x) = (Γ(u)(a), A(u)(x)) (on morphisms)

The projections are defined as the set-theoretic projections:

pI(a, x) = a

v(I)(a, x) = x

Given a morphism f : ∆ → Γ and a term M ∈ Tm(∆, A{f}), we define the
context morphism extension as:

⟨f,M⟩I(δ) = (fI(δ),M(I)(δ))

Finally, we define how to interpret type formers in the presheaf model.
Given a context Γ and A ∈ Ty(Γ) and B ∈ Ty(Γ.A), we define Π(A,B)(I, a) as

a set of families w, where each w is

w := {wf | J ∈ C, f : J → I}
for a ∈ Γ(I), where wf is a “dependent function”

wf ∈ Πu∈A(J,Γ(f)(a))B(J,Γ(f)(a), u)

with the “naturality” requirement:

B(g)(wf (u)) = wf◦g(A(g)(u))

The definition of Π(A,B) on morphisms is the following: given f : (I ′,Γ(f)(a)) →
(I, a), we put

Π(A,B)(f)(w) := {wf◦g | g : J → I ′}
Given M ∈ Tm(Γ.A,B) we put λ(M) ∈ Tm(Γ,Π(A,B)) as

λ(M)(I, a) = w

where w is a family

12 AUKE BOOIJ AND DANIIL FRUMIN

wf :J→I(u) := M(J,Γ(f)(a), u)

Finally, the application morphism App is defined as

AppI(a, u, w) := widI (u)

where a ∈ Γ(I), u ∈ A(I, a), w ∈ Π(A,B)(I, a).
The dependent sum Σ(A,B) is defined as

Σ(A,B)(I, a) := {(x, y) | x ∈ A(I, a), y ∈ B(I, a, x)}
The constructor, recursor, and other details are given in [8, Section 1.2.2].

3. Soundness and completeness

We would like to state a soundness and completeness result for Categories with
Families as models of type theory. We do this by defining an interpretation function.
It maps the sentences of the theory, namely “syntactic” contexts, types and terms,
to semantic such objects, namely objects of the category of contexts, elements of
the set of types in a category, and elements of the set of terms in a type.

Now, every CwF C2 defines an interpretation function. In particular, we have
three homonymous partial maps [[.]]C (where we will drop the CwF C, so writing
[[.]] instead) on the language of type theory such that

• for comma-separated lists Γ of typed variables, [[Γ]] becomes a semantic
context;

• for expressions σ of type formers, [[Γ;σ]] becomes a semantic type in the
context [[Γ]];

• for expressions M of introduction and elimination principles, [[Γ;M]] be-
comes a semantic term of an appropriate type [[Γ;σ]] in context [[Γ]].

Soundness is now stated as follows: for any CwF C:
• If ⊢ Γ ctxt, then ([[Γ]] is defined and) [[Γ]] ∈ ob C.
• If Γ ⊢ σ type, then [[Γ;σ]] ∈ Ty([[Γ]]).
• If Γ ⊢ M : σ, then [[Γ;M]] ∈ Tm([[Γ]], [[Γ;σ]]).

Additionally, soundness states that interpretation functions preserve equality in the
following sense:

• If ⊢ Γ = ∆ ctxt, then [[Γ]] = [[∆]].
• If Γ ⊢ σ = τ type, then [[Γ;σ]] = [[Γ, τ]].
• If Γ ⊢ M = N : σ, then [[Γ;M]] = [[Γ;N]].

Conversely, we can state completeness:

• If for every CwF C, we have that [[Γ]]C ∈ ob C, then ⊢ Γ ctxt.
• If for every CwF C, we have that [[Γ;σ]]C ∈ Ty([[Γ]]), then Γ ⊢ σ type.
• If for every CwF C, we have that [[Γ;M]]C ∈ Ty([[Γ]], [[Γ;σ]]), then Γ ⊢ M : σ.

And additionally:

• If for every CwF C, we have that [[Γ]] = [[∆]], then ⊢ Γ = ∆ ctxt.
• If for every CwF C, we have that [[Γ;σ]] = [[Γ; τ]], then Γ ⊢ σ = τ type.
• If for every CwF C, we have that [[Γ;M]] = [[Γ;N]], then Γ ⊢ M = N : σ for
an appropriate type σ.

2Recall that we refer to Categories with Families by naming their underlying category of
contexts, leaving the remaining structure implicit.

CATEGORICAL MODELS OF TYPE THEORY 13

In the case of first-order logic, soundness is an easily verified result, which is
generally considered to be straightforward. Somewhat curiously, soundness for our
models of type theory is a nontrivial result, and in fact, completeness is immediate.
For this reason, we start with discussing why completeness holds, and then describe
the proof of soundness.

3.1. Definition of interpretation functions. To define such interpretation func-
tions, we realize that its input is the language of type theory, which is defined in-
ductively. Hence, a logical way to define them is by induction on the structure of
the input: namely, on the structure of type-theoretical expressions.

The interpretation function actually consists of three (partial) maps, and hence
we have to do at least three inductions. Additionally, by definition of the type
theory, there are at least as many induction cases as there are type formers and
introduction principles. So while the definition is not fundamentally complicated,
there are many cases to consider.

For illustrative purposes, we list a few.3

[[♢]] := ⊤
[[Γ, x : σ]] := [[Γ]].[[Γ;σ]]

}
These define [[.]] for contexts.

[[Γ;Πx : σ.τ]] := Π([[Γ;σ]], [[Γ, x : σ; τ]])

...

 Type formers

[[Γ, x : σ;x]] := v[[Γ;σ]]

[[Γ, x : σ,∆, y : τ ;x]] := [[Γ, x : σ,∆, x]]{p([[Γ, x : σ,∆; τ]])}
[[Γ;Appσ,τ (M,N)]] := App[[Γ;σ]],[[Γ,x:σ;τ]]([[Γ;M]], [[Γ;N]])

[[Γ;λx : σ.Mτ]] := λ[[Γ;σ]],[[Γ,x:σ;τ]]([[Γ, x : σ;M]])

...

Terms

3.2. Completeness. To prove completeness of our models of type theory, we need
to, from knowledge of the models, somehow be able to exhibit proofs. In fact, we
obtain these proofs trivially: for example, if some comma-separated list of typed
variables is a valid context in any CwF, then in particular it is so in the term model
of subsection 2.6. But we defined the contexts of the term model to be exactly
those lists which are provable to be valid contexts (modulo definitional equality),
so in particular this shows that the semantically valid context is a provably valid
context, as required.

The cases for types and terms are completely analogous. Hence, we arrive at a
completeness result for models of type theory.

3.3. Soundness. As noted in the introduction of this section, the proof for sound-
ness is somewhat nontrivial. We can see why this must be the case: the definition
of interpretation functions involves substitution principles, for example in the case
of a term x, where x is not the last variable listed in the context. However, the

3Note that in the App case, the “function-application” notation is justified by the duality
between terms and sections described in subsection 2.3.

14 AUKE BOOIJ AND DANIIL FRUMIN

conclusion given by the soundness theorem — namely that x is interpreted as a
term of the type we expect — is free of any substitutions.

Hence, the proof of soundness must be able to adjust for these substitutions. This
is typically done using a pair of substitution lemmas. Technical details of these can
be found in Hofmann [6], and a more complete exposition is given in Streicher [12].

4. Other models

In sections 2.5, 2.6 and 2.7, we presented a few models. We now continue this
discussion: we present models of particular significance to the development of Ho-
motopy Type Theory.

4.1. The groupoid model. Of historical and conceptual importance is the model
of dependent type theory in groupoids [7].

4.1.1. Category of groupoids. As the base category we consider the category GPD
of groupoids. Given a groupoid/context Γ, the set of types over Γ is defined to be
the set of functors from Γ to GPD

Ty(Γ) = [Γ,GPD]

A type A ∈ Ty(Γ) is also called a family of groupoids over Γ.
If f : ∆ → Γ is a groupoid morphism and A ∈ Ty(Γ), then A{f} is defined

simply as A ◦ f : ∆ → GPD.
The set of terms Tm(Γ, A) is defined to be a set of dependent objects over A, i.e.

objects M such that

• An object M(γ) ∈ A(γ) for each γ ∈ Γ;
• A morphism M(p) : A(p)(M(γ)) → M(γ′) for each p : γ → γ′ in Γ, such
that certain “functorial” laws hold:

– M(idγ) = idM(γ)

– M(p′ ◦ p) = M(p′) ◦ (A(p′)(M(p)))

The substitution M{f} ∈ Tm(∆, A{f}) is given by composing components of
M with f .

Finally, we define the notions of context extension and context morphism exten-
sion.

If Γ is a groupoid and A ∈ Ty(Γ), then Γ.A is defined to be a Grothendieck
construction

∫
A (“category of elements”); more explicitly Γ.A is a groupoid of

pairs (γ, a), such that γ ∈ Γ and a ∈ A(γ). A morphism between (γ, a) and (γ′, a′)
is a pair

(γ, a)
(p,q)−−−→ (γ′, a′)

such that p : γ → γ′ in Γ and q : A(p)(a) → a′ in A(γ′). The identity morphism is

id(γ,a) = (idγ , ida)

and the composition is defined as

(γ, a) (γ′, a′) (γ′′, a′′)
(p,q)

(p′◦p,q′◦A(p′)(q))

(p′,q′)

CATEGORICAL MODELS OF TYPE THEORY 15

The canonical projection pΓ.A : Γ.A → Γ is defined simply as pA(γ, a) = γ. The
second projection vA ∈ Tm(Γ.A,A{pA}) is defined as

vA(γ, a) = a

vA(p, q) = q

Given a morphism f : ∆ → Γ and M ∈ Tm(∆, A{f}), we define a morphism
⟨f,M⟩ : ∆ → Γ.A as

⟨f,M⟩(δ) = (f(δ),M(δ))

⟨f,M⟩(p) = (f(p),M(p))

We know that M(δ) ∈ A{f}(δ) = A(f(δ)), so the definition makes sense. Given
this definition it is clear that p(A) ◦ ⟨f,M⟩ = f , that vA{⟨f,M⟩} = M , and that
⟨p(A), vA⟩ = idΓ.A; finally:

(⟨f,M⟩ ◦ g)(ϵ) = (f(g(ϵ)),M(g(ϵ))) = ⟨f ◦ g,M{g}⟩(ϵ)

4.1.2. Interpreting types. Arguably, one of the main contributions of the seminal
paper [7] is the idea that types can be viewed as groupoids, and proofs of the
identity types can be seen as isomorphisms in groupoids.

Consider an empty context ♢4. Then a type over ♢ is just a functor A′ :=
♢ → GPD, which is to say, a groupoid A := A′(∗). We interpret the identity
type IdA(a, b) as a (discrete) groupoid HomA(a, b). The reflexivity term refla is
interpreted as ida ∈ HomA(a, a). However, if we want IdA to be a proper type, we
have to extend it to a functor A×A → GPD. The definition of IdA on morphisms
is the following: given q1 : a → a′, q2 : b → b′, we define IdA(q1, q2) : HomA(a, b) →
HomA(a

′, b′)

IdA(q1, q2)(p) = q2 ◦ p ◦ q−1
1

a a′

b b′

p

q1

IdA(q1,q2)(p)

q2

As for identity elimination, consider a context [a : A, b : A, p : IdA(a, b)] (that
is, ♢.A.A{pA}.IdA). The objects of such groupoid are triples (a, b, p). A morphism
from (a, b, p) to (a′, b′, p′) is a triple (q1, q2, s), where q1 : a → a′, q2 : b → b′, and
s : IdA(q1, q2)(p) → p′ — a morphism in IdA(a

′, b′). However, such a morphism s
can exist only if IdA(q1, q2)(p) = p′, thus, we will omit the third component s from
the triple.

In order to be able to interpret identity elimination, we have to derive a term
R(H) of a type C : [a : A, b : A, p : IdA(a, b)] → GPD from a term H of a type
C{ReflA} : [a : A] → GPD. We put

R(H)(a, b, p) = C(ida, p, idp)(H(a))

4Note that this is the terminal groupoid, which has one element ∗ and one identity morphism.

16 AUKE BOOIJ AND DANIIL FRUMIN

Why does this work? Well, first of all, we note that (ida, p, idp) is a morphism
between (a, a, ida) and (a, b, p), because IdA(ida, p)(ida) = p (by the definition of
IdA(ida, p)). Thus, C(ida, p, idp) : C(a, a, ida) → C(a, b, p). Finally, it is easy to
check that R(H){ReflA} = H.

In order to define R(H) on morphisms, let p : a → b, let p′ : a′ → b′, and let
(q1, q2) : (a, b, p) → (a, b, p′); then we need to define

R(H)(q1, q2) : C(q1, q2)(R(H)(a, b, p)) → R(H)(a′, b′, p′)

However, note that

C(q1, q2)(R(H)(a, b, p)) = C(q1, q2)(C(ida, p)(H(a))) = C(q1, q2 ◦ p)(H(a))

From the fact that (q1, q2) : (a, b, p) → (a, b, p′) we get the commutativity of the
following square:

a a′

b b′

p

q1

p′

q2

Thus

C(q1, q2 ◦ p)(H(a)) = C(q1, p
′ ◦ q1)(H(a)) = C(ida′ , p′)(C(q1, q1)(H(a)))

On the other hand, R(H)(a′, b′, p′) = C(ida′ , p′)(H(a′)). Therefore, elaborating
on type signature, we get

R(H)(q1, q2) : C(ida′ , p′)(C(q1, q1)(H(a))) → C(ida′ , p′)(H(a′))

It is thus sufficient to give a morphism C(q1, q1)(H(a)) → H(a′), and lift it with
C(ida′ , p′). The morphism H(q1) is exactly such a morphism! In conclusion, we get
the following definition:

R(H)(q1, q2) = C(ida′ , p′)(H(q1))

It is straightforward to extend this definition to arbitrary contexts; technical
details and further proofs are given in Hofmann and Streicher [7].

4.1.3. Universe of groupoids. We start by assuming a meta-theoretical universe V.
We call a groupoid X small if both objects and morphisms of X are in V. By
Gpd we denoted a category of small groupoids, restricting the morphisms to only
isomorphisms of groupoids. Thus, Gpd is a groupoid itself: Gpd ∈ GPD. Gpd
will serve as a semantic universe object.

We want to have a type-theoretic universe U , such that U ∈ Ty(Γ) for any
context Γ. We define U to be a constant functor sending each element γ ∈ Γ to
Gpd ∈ GPD. Then a term of U in Γ (a “small type”) would be a “dependent
object” A, such that

(1) For all γ ∈ Γ, A(γ) is an object of U(γ);
(2) For all f : γ → γ′, A(f : γ → γ′) is a U(γ)-morphism from U(f)(A(γ)) and

A(γ′);
(3) A(f) has to satisfy the usual almost-functorial properties

Unfolding the definition of U we get

(1) For all γ ∈ Γ, A(γ) is a small groupoid from Gpd;

CATEGORICAL MODELS OF TYPE THEORY 17

(2) For all f : γ → γ′, A(f : γ → γ′) ∈ HomGpd(A(γ), A(γ′)), satisfying
functorial laws.

As we can see, in the special case of U , a term A ∈ Tm(Γ, U) is just a functor
A : Γ → Gpd. Finally, we want to turn terms A of the type U into types over Γ.
For that consider a (faithful, but not full) inclusion functor El : Gpd → GPD.
Then El ◦A : Γ → GPD is a type over Γ. Such types are called “small”.

One might wonder if we get U : U in that system? Well, if the meta-universe
V was an actual universe, then Gpd ̸∈ Gpd. Hence, U is not a functor from
Γ → Gpd, and, therefore, the type-theoretic universe is not a term of itself.

Using the El functor, we can construct a universe structure in the sense of Ka-
pulkin et al. [9]. We define U asGpd and Ũ as the Grothendieck construction for El :
namely as G(Gpd,El). This automatically gives us a fibration p : G(Gpd,El) →
Gpd of groupoids. Then, for each groupoid Γ and a morphism A : Γ → Gpd, we
have that pA : Γ.A → Γ is a pullback of p along A

Γ.A G(Gpd,El)

Γ Gpd

q

pA p

A

where q(γ, a) = (A(γ), a).
In order to see that it is a pullback, consider an arbitrary X and morphisms

f : X → G(Gpd,El) and h : X → Γ, such that p◦ f = A◦h. That implies that for
every x ∈ X, we have that f(x) has the form (A(h(x)), y) for y ∈ A(h(x)). Then
define k : X → Γ.A as k(x) = (h(x), y).

4.2. Cubical sets. The model of dependent type theory in cubical sets [2, 8] is
of importance because it is a constructive model of a type theory with universe
univalence. Constructing such a model is a first step in providing a computational
explanation for univalence, and turning Homotopy Type Theory into a program-
ming language.

4.2.1. Geometrical presentation. Cubical sets are defined using the cube category,
denoted by □. It consists of sets I0, I1, I2, . . . , where I = {0, 1} is an “interval”.
Thus, I0 can be seen as a point, I1 can be seen as a line, and so on. The morphisms
in □ are generated by two classes of morphisms: face maps and degeneracy maps.

Face maps are maps δϵi (n) : I
n → In+1 of the form

δϵi (n)(x1, . . . , xn) = (x1, . . . , xi−1, ϵ, xi, . . . , xn)

for ϵ = 0, 1, and 1 ≤ i ≤ n+1. Face maps can be seen as mappings of n-cubes to
faces of (n+ 1)-cubes. The direction of the face is determine by i and the position
is determined by ϵ.

The second class of maps are degeneracy maps: maps ei(n) : I
n → In−1 defined

as

ei(n)(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn)

for 1 ≤ i ≤ n. Degeneracy maps can be thought as flattening n-cubes along a
direction i.

18 AUKE BOOIJ AND DANIIL FRUMIN

A cubical set is a presheaf on □. Intuitively, we can see a cubical set as an object
constructed by a number of n-cubes (for arbitrary n), glued together in some way;
such information is bundled together in a presheaf.

One of the examples of cubical sets are standard n-cubes, given by

□n = Hom□(−, In)

For example, □2(Ik) is a collections of ways that k-cubes can be mapped to a
square. For example

□2(I2) = {δ01(2), δ11(2), δ02(2), δ12(2)}
which are four ways of mapping a line segment onto a square; this can be visu-

alized as

δ01

δ12

δ11

δ02

A cubical set also tells us how to “glue” faces together. For example, consider
□2(δ11(0))(δ

1
1) = δ11(1) ◦ δ11(0) and □2(δ11(0))(δ

1
2(1)) = δ12(1) ◦ δ11(0). Those two

morphisms are identical:

(δ11(1) ◦ δ11(0))(∗) = (1, 1)

(δ21(1) ◦ δ11(0))(∗) = (1, 1)

That means that δ12(1) and δ11(1) has a common point (namely, δ11(0)) in □2,
which can be visualized as in Figure 1.

δ12(1)

δ11(1)

δ11(0)

Figure 1. Visualization of δ12(1) and δ11(1) sharing a point

4.2.2. Algebraic presentation. Another presentation of cubical sets, used in Bezem
et al. [2] and Huber [8], uses a dual category, formulated more algebraically; see [5,
Remark 4.3] and [8, Remark 2.8].

Consider a countable set of variable names A (we usually reserve variables x, y, z
for names), such that 0, 1 ̸∈ A. Fix a category C finite subsets of A (we usually
employ variables I, J,K for such sets). A morphism f : I → J in this category is
a set-theoretic function f : I → J ∪ {2}, with the requirement that if f(i) = f(j)

CATEGORICAL MODELS OF TYPE THEORY 19

and f(i) ̸= 0 and f(i) ̸= 1, then i = j; that is, f is injective on the defined part,
which denoted by def(f) := {x ∈ I | f(x) ∈ J}.

We can think of a morphism f : I → J as a subsitution, which can only substitute
in 0 or 1. There are two special kinds of maps in that category:

Face maps: Substitutions (x = 0) and (x = 1) going from I to I − x (if x is
in I); those are defined as

(x = 0) := y 7→

{
0 if y = x

y otherwise

(x = 1) := y 7→

{
1 if y = x

y otherwise

Degeneracy maps: Substitutions of the form f : I → J , such that f [I] ⊆ J .
A basic degeneracy map is a map of the form ιx : I → I ∪ {x} for x ̸∈ I.

The following lemma characterizes morphism in C and hints at why two presen-
tations of cubical sets are equivalent:

Lemma 1 (Factoring lemma, see Huber [8, Lemma 2.2]). Any morphism f : I → J
can be written uniquely as f = g ◦ f01, where f01 : I → def(f) is a composition of
face maps and def(g) = def(f).

A cubical set is then defined as a functor C → Set (that is, as a presheaf on
Cop). We denote that category of cubical sets as cSet. For each X ∈ cSet and
I ∈ C, we can think of an element u ∈ X(I) as a hypercube of dimension |I|. We
can obtain “faces” of u by considering X(x = 0)(u), X(x = 1)(u) ∈ X(I − x).

The CwF structure on cSet is defined as in subsection 2.8. However, due to tech-
nical issues, such construction does not support non-trivial identity types. This
is resolved by requiring additional structure on the cube category (of whichever
variant), such as filling conditions, which over time has become increasingly com-
plicated. See Bezem et al. [2] for details.

5. Going further

We have discussed a notion of models of type theory known as Categories with
Families, which, in particular, is sound and complete. We have seen how this can
be applied to show the independence of various claims, such as the unprovability
of 0 ̸= 1 in the absence of universes, and the existence of nontrivial identity paths
in the groupoid model.

There are other notions of models: one slightly modified variant is that of Cat-
egories with Attributes5, where — unlike our assignment Tm of sets of terms,
considering the motivation of subsection 2.3, we interpret the terms in a type to be
a collection of sections: so we can go from a CwF to a CwA, simply by forgetting
the definition of Tm.

We can essentially recover a CwF from a CwA by defining Tm(Γ, σ) to be that
set of sections: but of course the exact terms we get are now, though comparable,
not quite the original ones.

5The notion is originally due to Cartmell (unpublished); it is essentially the same as the notion
of type-category by Pitts [11].

20 AUKE BOOIJ AND DANIIL FRUMIN

There are even more notions of models, such as contextual categories [12], which
extend the definition of CwAs with a length function, and the more recent natural
models of homotopy type theory by Awodey [1]. In most cases, the difference be-
tween the models is merely technical, and the various models are relatively easily
translated into eachother.

Recent work on models of Homotopy Type Theory particularly revolves around
that of cubical sets (see e.g. Bezem et al. [2], Licata and Brunerie [10] and Docherty
[3]).

References

[1] Steve Awodey. Natural models of homotopy type theory (abstract). In Leonid
Libkin, Ulrich Kohlenbach, and Ruy de Queiroz, editors, Logic, Language,
Information, and Computation, volume 8071 of Lecture Notes in Computer
Science, pages 11–12. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-39991-
6. doi: 10.1007/978-3-642-39992-3 2. URL http://dx.doi.org/10.1007/

978-3-642-39992-3_2.
[2] Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type Theory

in Cubical Sets. In Ralph Matthes and Aleksy Schubert, editors, 19th Interna-
tional Conference on Types for Proofs and Programs (TYPES 2013), volume 26
of Leibniz International Proceedings in Informatics (LIPIcs), pages 107–128,
Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-939897-72-9. doi: http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.
107. URL http://drops.dagstuhl.de/opus/volltexte/2014/4628.

[3] Simon Docherty. A model of type theory in cubical sets with connections.
Master’s thesis, University of Amsterdam, 2014.

[4] Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo,
editors, Types for Proofs and Programs, volume 1158 of Lecture Notes in Com-
puter Science, pages 120–134. Springer Berlin Heidelberg, 1996. ISBN 978-3-
540-61780-8. doi: 10.1007/3-540-61780-9 66. URL http://dx.doi.org/10.

1007/3-540-61780-9_66.
[5] Marco Grandis and Luca Mauri. Cubical sets and their site. Theory and

Applications of Categories, 2003.
[6] Martin Hofmann. Syntax and semantics of dependent types. In P. Dybjer and

A. Pitts, editors, Extensional Constructs in Intensional Type Theory, pages
13–54. Springer, 1997. ISBN 9780521118460.

[7] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory (Venice, 1995), vol-
ume 36 of Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York,
1998.

[8] Simon Huber. A Model of Type Theory in Cubical Sets. PhD thesis, Depart-
ment of Computer Science and Engineering, Chalmers University of Tech-
nology and University of Gothenburg, Göteborg, Sweden, 7 2015. URL
http://www.cse.chalmers.se/~simonhu/misc/lic.pdf.

[9] C. Kapulkin, P. LeFanu Lumsdaine, and V. Voevodsky. The Simplicial Model
of Univalent Foundations. ArXiv e-prints, November 2012.

[10] Dan Licata and Guillaume Brunerie. A cubical approach to synthetic homotopy
theory. Preprint, 2015.

http://dx.doi.org/10.1007/978-3-642-39992-3_2
http://dx.doi.org/10.1007/978-3-642-39992-3_2
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://dx.doi.org/10.1007/3-540-61780-9_66
http://dx.doi.org/10.1007/3-540-61780-9_66
http://www.cse.chalmers.se/~simonhu/misc/lic.pdf

CATEGORICAL MODELS OF TYPE THEORY 21

[11] A. M. Pitts. Categorical logic. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, Volume 5. Al-
gebraic and Logical Structures, chapter 2, pages 39–128. Oxford Univer-
sity Press, 2000. ISBN 0-19-853781-6. URL http://www.oup.co.uk/isbn/

0-19-853781-6.
[12] Thomas Streicher. Semantics of Type Theory: Correctness, Completeness, and

Independence Results. Birkhauser Boston Inc., Cambridge, MA, USA, 1991.
ISBN 0-8176-3594-7.

[13] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book, Insti-
tute for Advanced Study, 2013.

http://www.oup.co.uk/isbn/0-19-853781-6
http://www.oup.co.uk/isbn/0-19-853781-6
http://homotopytypetheory.org/book

	1. Introduction
	1.1. Soundness and completeness of models

	2. Categories with families
	2.1. Category of contexts
	2.2. Categories with families
	2.3. Terms and sections
	2.4. Interpreting types
	2.5. Example 1: the truth-valued model
	2.6. Example 2: the term model
	2.7. Example 3: Set-theoretic model
	2.8. Example 4: CwF from a presheaf category

	3. Soundness and completeness
	3.1. Definition of interpretation functions
	3.2. Completeness
	3.3. Soundness

	4. Other models
	4.1. The groupoid model
	4.2. Cubical sets

	5. Going further
	References

