
Springer Nature 2021 LATEX template

Semantic Cut Elimination for the Logic of
Bunched Implications and Structural

Extensions, Formalized in Coq

Dan Frumin

Bernoulli Institute, University of Groningen.

Contributing authors: d.frumin@rug.nl;

Abstract
The logic of bunched implications (BI) is a substructural logic that
forms the backbone of separation logic, the much studied logic for
reasoning about heap-manipulating programs. Although the proof
theory and metatheory of BI are mathematically involved, the for-
malization of important metatheoretical results is still incipient.
In this paper we present a self-contained formalized, in the Coq
proof assistant, proof of a central metatheoretical property of BI:
cut elimination for its sequent calculus, as well the extension of
cut elimination to sequent calculus with arbitrary structural rules.
The presented proof is semantic, in the sense that is obtained by inter-
preting sequents in a particular “universal” model. This results in a more
modular and elegant proof than a standard Gentzen-style cut elimination
argument, which can be subtle and error-prone in manual proofs for BI.
In particular, our semantic approach avoids unnecessary inversions on
proof derivations, or the uses of cut reductions and the multi-cut rule.
Our prof is modular and also robust. We demonstrate how our
method scales to (i) all extensions of BI with arbitrary struc-
tural rules, and (ii) an extension with an S4-like □ modality.

Keywords: cut elimination, bunched implications, interactive theorem proving,
Coq, substructural logics

1

Springer Nature 2021 LATEX template

2 Semantic Cut Elimination for BI

1 Introduction
The logic of bunched implications (BI) [1] is an extension of intuitionistic logic
with substructural connectives. BI (and its classical cousin Boolean BI) is known
for, among other things, forming a basis for separation logic [2, 3] – a popular
program logic for verification of heap-manipulating programs. The BI itself, and
many of its important models, are based on the idea that propositions denote
ownership of resources and BI includes a separating conjunction connective ∗,
which signifies ownership of disjoint resources [4]. As an adjoint to ∗, BI also
includes a magic wand connective −∗, which is determined by the property

A ⊢ B −∗ C ⇐⇒ A ∗B ⊢ C.

Additionally, BI includes a unit element Emp for the separating conjunction ∗.
Proof theoretically, BI can be formalized in a Gentzen-style sequent calculus,

which operates on the judgments of the form ∆ ⊢ A, where ∆ is not merely a
multiset of formulas, but a bunch: a tree in which leaves are formulae and nodes
are connected with either ; or , (signifying connecting the resources using ∧
and ∗, respectively). For example, a bunch might be ((a∧ b) ; c), (d ; e). Due
to this nested structure of bunches, the left rules in the BI sequent calculus
can apply deep inside bunches. For example, an instance of the left rule for ∧,
specialized to the bunch above, is

((a ; b) ; c) , (d ; e) ⊢ φ
((a ∧ b) ; c) , (d ; e) ⊢ φ

That is, a ∧ b got “destructed” into a ; b in the context ([−] ; c) , (d ; e),
where [−] signifies a hole that can be filled.

BI treats separating conjunction ∗ (and, hence, ,) as a substructural con-
nective, that does not admit contraction and weakening (i.e. neither a ⊢ a ∗ a
nor a ∗ b ⊢ a hold), but it retains the usual structural rules for intuitionistic
conjunction ∧ (and, hence, ;). In the sequent calculus, the corresponding
structural rules can as well be applied deeply inside bunches. For example, an
instance of a contraction rule might look like this:(

(a , b) ; (a , b)) , c ⊢ φ
(a , b) , c ⊢ φ

Here we contract the bunch (a , b) inside the context [−] , c. In BI we have
to permit contraction on arbitrary bunches, whereas in intuitionistic logic
contraction on individual formulas is sufficient.

As usual, BI includes a cut rule, which formalizes the informal process of
applying an intermediate lemma in a proof. Similar to the other rules, the cut

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 3

rule can be applied on a formula deeply nested inside a bunch:

∆′ ⊢ ψ ∆(ψ) ⊢ φ
∆(∆′) ⊢ φ

where ∆(−) is an arbitrary bunch with a hole.
In this paper we study the cut elimination property for BI. That is, every

sequent that has a proof in BI involves the cut rule also has a proof that is
cut-free (i.e. does not use of the cut rule). From a theoretical point of view, cut
elimination can be used to show important meta-theoretical properties (subfor-
mula property, consistency, conservativity). From a more practical standpoint,
cut elimination is an important ingredient in proof search.

Why formalize cut elimination?
Cut elimination is a staple in metatheory of logics. Because of that, the question
of cut elimination is often one of the first to be raised, whenever a new logic or
a new sequent calculus is proposed. It is then common to prove cut elimination
directly, by providing a recursive procedure on derivation trees, potentially
using additional measure(s) to prove that this procedure terminates.

Proofs organized along those lines are repetitive, consist of many sub-cases,
and include many implicit details (e.g. about the structure of the contexts).
As a result, it is not uncommon to see proofs that are “analogous” to known
correct proofs of cut elimination for related systems, or proofs that only discuss
a couple of cases that are considered illustrative, with the bulk of the proof
being left as a (rarely completed) exercise for the reader.

Unfortunately, due to the interplay and complexity of all the details, such
informal proofs can be quite risky. In the case of BI, the deep nested structure
of bunches and explicit structural rules contribute to the complexity and the
level of details. For example, a proof of cut elimination for BI given in [5,
Chapter 6] had a gap, that was later fixed in [6]. The issue seems to arise from
the treatment of the contraction rule. In presence of explicit contraction a
naive approach of pushing each instance of the cut rule up along the derivation
tree does not necessarily work. In order to resolve this, the cut rule should
be generalized to the multicut rule, combining contraction and cut together.
Then cut elimination is generalized to multicut elimination, offering a stronger
induction hypothesis that can be applied to subproofs. Unfortunately, this
generalization was originally done in a way that only works for some of the
cases. See [6] for more details.1

This is not the only instance of erroneous proofs of cut elimination slipping
in. Several sequent calculus formulations for bi-intuitionistic logic were wrongly
believed to enjoy cut elimination. These mistakes were later fixed in [9]. Other
instances include an incorrect proof of cut elimination for full intuitionistic
linear logic, fixed in [10, 11]; an incorrect proof of cut elimination for nested

1It is possible to avoid the multicut generalization by using more fine-grained measure functions,
see [7] for the case of intuitionistic logic. As another alternative, Brotherston [8] gave a proof of
cut elimination for BI by going through a displayed calculus.

Springer Nature 2021 LATEX template

4 Semantic Cut Elimination for BI

sequent systems for modal logic [12], fixed in [13]. While not incorrect in itself,
cut elimination for a formulation of the provability logic GL by Sambin and
Valentini [14] with explicit structural rules was subject of some controversy
until it was resolved in [15].

Semantic cut elimination.
To counterbalance informal pen-and-paper proofs of cut elimination for BI, we
provide a fully formalized proof in the Coq proof assistant. However, instead of
trying to formalize an intricate Gentzen-style process, as in [6], we approach
cut elimination using the ideas of algebraic proof theory: a research area aimed
at making tight connections between structural proof theory and algebraic
semantics of logics. In our proof we adapt the methods of algebraic semantic
cut elimination for linear logic [16, 17], in which cut elimination is obtained
by constructing a special model for linear logic that is universal w.r.t. cut-free
provability. We believe that this approach to cut elimination is more amendable
to formalization and extension, than a direct Gentzen-style proof.

Semantic cut elimination for BI was first developed by Galatos and
Jipsen [18], building on their work on residuated frames [19]. Their approach is
quite general, and the proof makes heavy use of intermediate structures (the
aforementioned residuated frames), which lie in between sequent calculus and
algebraic semantics. By contrast, the proof presented here only involves the
“syntax” (sequent calculus), and the “semantics” (algebraic models) parts. This
leaves us with fewer structures to consider in the formalization.

To demonstrate the modularity of our proof, we extend it to cover two
different types of extensions of BI. Firstly, we consider BI extended with
a particular class of structural rules (simple structural rules), which cover
weakening and contraction (both for , and ;), as well as many other kinds of
structural rules. Secondly, we consider BI extended with an S4-like □ modality.
In both cases we show that we do not have to make a lot of modifications to the
proof, and the modifications that we do have to make are, in a way, systematic.

1.1 Contributions and Outline
The main contributions of this paper are as follows. We present an algebraic
proof of cut elimination for BI. Our proof can be seen as a simplification of
the Galatos and Jipsen’s method [18], without the framework of residuated
frames. We demonstrate the modularity of our approach by extending it to
cut elimination of BI with an S4-like modality (modalities were not previously
considered in the framework of residuated frames). We formalize the results
in the Coq proof assistant, which is to our knowledge the first published
formalization of cut elimination for BI.

The remained of the paper is structured as follows. In Section 2 we present
the main idea behind semantic proofs of cut elimination. In Section 3 and
Section 4 we recall the sequence calculus for BI and its (standard) algebraic
semantics via BI algebras. In Section 5 we consider when a closure operator
on a BI algebra induces a BI subalgebra. We then apply this construction in

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 5

Section 6 to obtain a “universal” model for cut-free provability, and use it to
prove cut elimination. In the next sections we demonstrate the extensibility of
this approach. First, in Section 7 we extend cut elimination to BI with arbitrary
analytic structural rules – a restricted form of structural rules. Then, in Section 8
we show that this restriction can be lifted, and BI admits cut elimination for
all structural rules. Finally, in Section 9 we extend cut elimination to BI with
an S4-like modality. We discuss our formalization efforts in Section 10. We
discuss related work in Section 11 and conclude in Section 12.

1.2 Formalization
The formalization is available online at:

https://github.com/co-dan/BI-cutelim.
In this paper we specifically refer to the version with git hash d26ff19.
Throughout the paper, identifiers in monospaced font (like this) accompany
statements and proposition. They indicate the names of the statements in the
Coq formalization and link to the corresponding place in the online documen-
tation. For example, the link proves points to the inductive definition of the
BI sequent calculus.

1.3 Publication History
This article is an extended version of a paper presented under the same title at
CPP 2022. Compared to the conference version, we have added the following
content. Section 7 on extensions of BI with analytic structural rules have been
expanded. Section 10 have been greatly expanded and highlights multiple parts
of the formalization. Finally, Section 8 on analytic completion of structural
rules is completely new, including the formalization.

2 Semantic Cut Elimination
In this section we explain some of the ideas and intuitions behind a semantic
proof of cut elimination in a semi-formal way, before diving straight into the
complexities of BI. The starting point is that there is a class of algebras in
which we can interpret logic. The main idea is to find a particular algebra
C, in which we can interpret the sequent calculus, and which has a property
that if JψK ≤ JφK in C, then ψ ⊢ φ is derivable without applications of the cut
rule. In this case, we say that C is a “universal” algebra for cut-free provability.
Then, cut elimination can be obtained by the (sound) interpretation of sequent
calculus into C.

Finding such a “universal” algebra is reminiscent of proving completeness
of a logic w.r.t. a class of algebras. In the case of completeness, we construct
a “universal” algebra L such that JψK ≤ JφK implies derivability of ψ ⊢ φ.
This Lindenbaum-Tarski algebra L is usually defined to be the collection of
equivalence classes of formulas modulo interprovability:

[φ] ≜ {ψ | (ψ ⊢ φ) ∧ (φ ⊢ ψ)}

https://github.com/co-dan/BI-cutelim
https://github.com/co-dan/BI-cutelim/tree/d26ff1962dc091175bd927f4331b2c307c461391
https://github.com/co-dan/BI-cutelim
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc.html#proves

Springer Nature 2021 LATEX template

6 Semantic Cut Elimination for BI

And the ordering ≤ on L is induced by provability:

[φ] ≤ [ψ] ⇐⇒ φ ⊢ ψ.

Provability does not depend on the representative of the equivalence class, and
so we get a poset L. The logical operators are interpreted in L in such a way
that JφK = [φ]. The argument for completeness then goes as follows: suppose
that JφK ≤ JψK in all the possible algebras; then, in particular that inequality
holds in L, which amounts to φ ⊢ ψ. Thus, any valid sequent is derivable.

It is precisely the connection between provability and the order on the
algebra that makes this model useful. We can imagine a reformulation of the
above model in terms of cut-free provability in sequent calculus:

[φ] ≤ [ψ] ⇐⇒ φ ⊢cf ψ.

This adaptation, however, does not work. In order to prove that the ordering
≤ is transitive, we need to show

φ ⊢cf ψ ψ ⊢cf χ

φ ⊢cf χ

which amounts to showing that cut is admissible in the cut-free fragment. We
seem to be back at square one.

To fix this, instead of interpreting formulas as sets of equivalent formulas
(which is what equivalence classes can be seen as), we would like to interpret
formulas as sets of contexts which prove the formula:

⟨φ⟩ ≜ {∆ | ∆ ⊢cf φ}.

Then, inclusion of sets is a good candidate for the ordering, because ψ ∈ ⟨ψ⟩
and, hence, ⟨ψ⟩ ⊆ ⟨φ⟩ implies ψ ⊢cf φ.

But how do we interpret logical connectives? We can interpret ⊤ as the
set of all contexts; then, clearly ⊤ = ⟨True⟩. However, we cannot pick the
empty set as an interpretation of ⊥: the set ⟨False⟩ is non-empty, as it contains
at least False itself. What we need is to find an interpretation J−K such that
JφK ⊆ JψK implies φ ⊢cf ψ (or, equivalently φ ∈ ⟨ψ⟩). Okada [16] proposed a
sufficient condition for such an interpretation: for any formula φ, φ ∈ JφK and
JφK ∈ ⟨φ⟩. Then, the desired property on the interpretation follows via a chain
of inclusions:

φ ∈ JφK ⊆ JψK ⊆ ⟨ψ⟩.
Note that the set of all contexts does not satisfy this condition: as we have

seen, the empty set a counter-example. It is the least element w.r.t set inclusion,
but False /∈ ∅, so we cannot set JFalseK = ∅. This suggests that, instead of
considering arbitrary sets of contexts, we need to refine the powerset algebra
somehow. A good starting point would be to consider the carrier of the algebra

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 7

containing just the sets of the form ⟨φ⟩, i.e. C = {⟨φ⟩ | φ ∈ Frml} (by analogy
with the Lindenbaum-Tarski algebra, which consists only of elements of the
form [φ]). We can then interpret bottom as ⊥ = ⟨False⟩, and it indeed will be
the least element in the algebra.

Looking at other connectives, we cannot interpret disjunction as set-theoretic
union, because the union ⟨φ⟩ ∪ ⟨ψ⟩ cannot always be written as ⟨χ⟩, for some
formula χ. That is, we cannot actually show that C, as given above, is closed
under unions, so ∪ is not a well-defined operation on C.

How should we then interpret disjunction if not as the union of sets? If we
cannot use the set union, we will use the “next best thing”: the smallest set in
C that actually contains the union. Formally, we set:

X ∨ Y =
⋂

{Z ∈ C | X ∪ Y ⊆ Z}.

This definition is still not without issues: for this operation to be defined, we
need to ensure that C is closed under arbitrary intersections. It turns out that
we can achieve this by modifying the carrier of C and “baking in” the closedness
under arbitrary intersections. Such a construction is obtained in a generic
way as a subalgebra of the powerset algebra generated by a particular closure
operator, as we will see in Sections 5 and 6.

In the remainder of the paper we develop this construction in details. But
first, to make the matters concrete, we recall the BI sequent calculus and
properties of its cut-free fragment (Section 3), and the algebraic semantics for
BI (Section 4).

3 Sequent Calculus for BI
In this section we briefly recall the sequent calculus formulation of BI [1], and
some of the properties of its cut-free fragment. The formulas of BI are obtained
from the following grammar:

φ,ψ ::= True | False | | ϕ ∧ ψ | φ ∨ ψ | φ→ ψ

| Emp | φ ∗ ψ | φ −∗ ψ | a (a ∈ Atom)

BI extends intuitionistic propositional logic with separating conjunction (∗),
magic wand (−∗, adjoint to separating conjunction), and the empty proposition
(Emp, unit for separating conjunction). We also include atomic propositions
drawn from a fixed set Atom.

The sequent calculus for BI is given in Figure 1. It operates on the sequents
of the form ∆ ⊢ φ, where φ is a formula and ∆ is a bunch – a tree composed
of binary nodes labeled with , and ; , and leaves being either formulas or
empty bunches ∅m and ∅a. Morally, we view bunches as equivalence classes of
such trees modulo commutative monoid laws for (,,∅m), and (; ,∅a). These
are given using structural congruence ≡, the rules for which are also given in

Springer Nature 2021 LATEX template

8 Semantic Cut Elimination for BI

Equivalence of bunches

∆1 ,∆2 ≡ ∆2 ,∆1 ∆1 ; ∆2 ≡ ∆2 ; ∆1

∆1 , (∆2 ,∆3) ≡ (∆1 ,∆2) ,∆3 ∆1 ; (∆2 ; ∆3) ≡ (∆1 ; ∆2) ; ∆3

∆ ,∅m ≡ ∆ ∆ ; ∅a ≡ ∆
∆ ≡ ∆′

Γ(∆) ≡ Γ(∆′)

Structural rules

ax
a ∈ Atom
a ⊢ a

equiv
∆′ ⊢ φ ∆ ≡ ∆′

∆ ⊢ φ

W;
∆(∆1) ⊢ φ

∆(∆1 ; ∆2) ⊢ φ

C;
∆(∆1 ; ∆1) ⊢ φ

∆(∆1) ⊢ φ

cut
∆′ ⊢ A ∆(A) ⊢ B

∆(∆′) ⊢ B

Multiplicatives

EmpR
∅m ⊢ Emp

EmpL
∆(∅m) ⊢ φ
∆(Emp) ⊢ φ

∗R
∆1 ⊢ φ ∆2 ⊢ ψ
∆1 ,∆2 ⊢ φ ∗ ψ

∗L
∆(φ , ψ) ⊢ χ
∆(φ ∗ ψ) ⊢ χ

−∗R
∆ , φ ⊢ ψ
∆ ⊢ φ −∗ ψ

−∗L
∆1 ⊢ φ ∆(∆2 , ψ) ⊢ χ
∆(∆1 ,∆2 , φ −∗ ψ) ⊢ χ

Additives

TrueR
∅a ⊢ True

TrueL
∆(∅a) ⊢ φ
∆(True) ⊢ φ

∧R
∆1 ⊢ φ ∆2 ⊢ ψ
∆1 ; ∆2 ⊢ φ ∧ ψ

∧L
∆(φ ; ψ) ⊢ χ
∆(φ ∧ ψ) ⊢ χ

→R
∆ ; φ ⊢ ψ
∆ ⊢ φ→ ψ

→L
∆1 ⊢ φ ∆(∆2 ; ψ) ⊢ χ
∆(∆1 ; ∆2 ; φ→ ψ) ⊢ χ

FalseL
∆(False) ⊢ φ

∨R1
∆ ⊢ φ

∆ ⊢ φ ∨ ψ

∨R2
∆ ⊢ ψ

∆ ⊢ φ ∨ ψ

∨L
∆(φ) ⊢ χ ∆(ψ) ⊢ χ

∆(φ ∨ ψ) ⊢ χ

Fig. 1 BI sequent calculus.

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 9

Figure 1. We could have defined provability on such equivalence classes, but
we opt for using explicit context conversions using equiv.

Most of the structural rules and the left rules can be applied to formulas
that occur nested inside some bunch with a hole ∆(−). We refer to such bunches
with holes as bunched contexts. For example, in the application of the rule ∧L
below we use the bunched context (p , [−]):

∧L
p , (p ; q) ⊢ p ∗ q
p , (p ∧ q) ⊢ p ∗ q.

3.1 Cut-free Provability
Let us write ∆ ⊢cf φ if ∆ ⊢ φ is derivable without the cut rule. In the rest of
this section we prove invertibility of several rules in the cut-free fragment of
BI. Those derived rules will be useful to us when constructing the algebraic
model in Section 6.

The first observation about the sequent calculus, is that we have formulated
the “axiom” rule φ ⊢ φ only for atomic formulas a ∈ Atom. This will significantly
simplify some of the proofs (for example, Lemma 3), but does not limit the
expressivity of the system, as witness by the following lemma.

Proposition 1 (Identity expansion, seqcalc_id_ext). For every formula φ
we can derive a sequent φ ⊢cf φ.

Proof By induction on the structure of φ. □

For the construction presented in this paper we need to show that a number
of rules are invertible in the cut-free sequent calculus. Specifically, we need to
show that −∗R, →R, ∗L, ∧L, EmpL, and TrueL are invertible.

Lemma 2 (wand_r_inv and impl_r_inv). The following rules are admissible:

−∗R-inv
∆ ⊢cf φ −∗ ψ
∆ , φ ⊢cf ψ

→R-inv
∆ ⊢cf φ→ ψ

∆ ; φ ⊢cf ψ

Proof By induction on the derivations ∆ ⊢cf φ −∗ ψ and ∆ ⊢cf φ→ ψ. □

At the end of the day, the proof of Lemma 2 by induction on derivations is
not very complicated, because the form of the context on the left-hand side
of the sequent is relatively simple. It is easy to show that the left rules can
commute with −∗R and →R. By contrast, showing that the rules ∗L and ∧L
are invertible is more involved for several reasons.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc.html#Seqcalc.seqcalc_id_ext
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc_height.html#SeqcalcHeight.wand_r_inv
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc_height.html#SeqcalcHeight.impl_r_inv

Springer Nature 2021 LATEX template

10 Semantic Cut Elimination for BI

First of all, just like for other sequent calculi with explicit contraction,
structural induction on the proof is not strong enough. Consider the following
derivation of φ ∗ ψ ⊢cf χ:

φ ∗ ψ ; φ ∗ ψ ⊢cf χ

φ ∗ ψ ⊢cf χ

Since φ∗ψ occurs twice in the premise, we need to apply the induction hypothesis
twice. From the first application of the induction hypothesis we get a proof

φ ∗ ψ ; (φ , ψ) ⊢cf χ,

but this proof is not a strict subderivation of the original derivation. Therefore,
we cannot use the induction hypothesis second time to obtain a proof of
(φ , ψ) ; (φ , ψ) ⊢cf χ.

In order to circumvent this, we do induction on the height of the derivation,
strengthening the statement to:

Lemma 3 (sep_l_inv). If there is a derivation of ∆(φ ∗ ψ) ⊢cf χ of height n,
then there is a derivation of ∆(φ , ψ) ⊢cf χ of height strictly less than n.

Similarly, if there is a derivation of ∆(φ ∧ ψ) ⊢cf χ of height n, then there
is a derivation of ∆(φ ; ψ) ⊢cf χ of height strictly less than n.

Note that this lemma would be false if we would have included an axiom
rule for arbitrary formulas: there would be a proof φ ∗ ψ ⊢cf φ ∗ ψ of height 0,
but the smallest proof of φ , ψ ⊢cf φ ∗ ψ is of height 1. That is why we have
restricted the axiom rule to atomic formulas, and got the general form of the
axiom rule as a derived statement (Proposition 1).

Similarly, by induction on the derivation height, we show that EmpL and
TrueL are invertible. We only care about the derivation height for the purposes
of induction, so we summarize the results on invertible rules in the following
lemma.

Lemma 4. The following rules are admissible:

∧L-inv
∆(φ ∧ ψ) ⊢cf χ

∆(φ ; ψ) ⊢cf χ

∗L-inv
∆(φ ∗ ψ) ⊢cf χ

∆(φ , ψ) ⊢cf χ

⊤L-inv
∆(True) ⊢cf χ

∆(∅a) ⊢cf χ

EmpL-inv
∆(Emp) ⊢cf χ

∆(∅m) ⊢cf χ

Let us write (∆)∗ for interpretation of ∆ as a formula: we substitute every
occurrence of , in ∆ with ∗, every occurrence of ∅m with Emp, and similarly for
the additive connectives. For example, ((∅m ; φ),ψ)∗ is (Emp∧φ)∗ψ. Clearly,
there is a derivation from ∆ ⊢cf χ to (∆)∗ ⊢cf χ, by repeated applications of
∗L, ∧L, TrueL and EmpL. For the other direction we have the following.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc_height.html#SeqcalcHeight.sep_l_inv

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 11

Corollary 5 (collapse_l_inv). The following rule is admissible:

∆′((∆)∗) ⊢cf χ

∆′(∆) ⊢cf χ

Proof By induction on ∆, using Lemma 4. □

4 Algebraic Semantics for BI
We interpret the BI sequent calculus in the algebraic structures known as BI
algebras, which are bounded Heyting algebras with a compatible residuated
monoidal structure.

Definition 6. A BI algebra B is a tuple (B,⊥,⊤,∧,∨,→,Emp, ∗,−∗) where
• (B,⊥,⊤,∧,∨,→) is a bounded Heyting algebra, i.e. a bounded distributive

lattice with the Heyting implication satisfying

a ∧ b ≤ c ⇐⇒ a ≤ b→ c

• ∗ : B × B → B is a monotone commutative and associative function;
• Emp : B is a unit element for ∗;
• −∗ : B × B → B is a binary operation satisfying

a ∗ b ≤ c ⇐⇒ a ≤ b −∗ c

Definition 7. Let B be an arbitrary BI algebra. Given an interpretation
i : Atom → B of atomic propositions, we interpret formulas of BI in B in the
usual tautological way:

JEmpK = Emp JTrueK = ⊤
Jφ ∗ ψK = JφK ∗ JψK Jφ ∧ ψK = JφK ∧ JψK

Jφ −∗ ψK = JφK −∗ JψK Jφ→ ψK = JφK → JψK
Jφ ∨ ψK = JφK ∨ JψK JFalseK = ⊥

JaK = i(a)

Theorem 8 (Soundness, seq_interp_sound). If ∆ ⊢ φ is derivable, then
J(∆)∗K ≤ JφK holds in any BI algebra.

Proof By induction on the derivation. □

4.1 BI Algebras from Monoids
In practice, a lot of BI algebras arise as predicates over a partial commutative
monoid. Let (M, ·, e) be a partial commutative monoid, i.e. a commutative

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc_height.html#SeqcalcHeight.collapse_l_inv
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc.html#Seqcalc.seq_interp_sound

Springer Nature 2021 LATEX template

12 Semantic Cut Elimination for BI

monoid for which the multiplication function · is only partially defined, and for
which the monoidal laws hold only for defined elements. We write x · y = ⊥ if
composition of x and y is undefined. Then the powerset P(M) is a (complete)
Heyting algebra, and it forms a BI algebra (P(M), ∅,M,∩,∪,→,0, •,−•) with
the following operators:

0 ≜ {e}
X • Y ≜ {x · y | x ∈ X, y ∈ Y, x · y ̸= ⊥}
X −• Y ≜ {z | ∀x ∈ X. z · x ̸= ⊥ =⇒ z · x ∈ Y }.

BI algebra from the monoid of contexts.
Let us write Bunch for the set of bunches, modulo the equivalence ≡ (from
Figure 1). We can endow the set Bunch of bunches with the structure of a
monoid. Composition of two contexts ∆ and ∆′ is just putting them next to
each other using ,:

∆ ·∆′ ≜ (∆ ,∆′)

then, up to equivalence of bunches, ∅m is the unit element. Using the powerset
construction we get a BI algebra P(Bunch).

This model is very much “freely generated” from syntax, but it is not very
useful, as it does not involve any notion of provability (only equivalence of
contexts). In this next sections we are going to refine this model, in order to
obtain a submodel which can be used to prove completeness and cut-elimination.

5 Moore Closures on BI Algebras
For cut elimination, we will be interested in subalgebras of the powerset algebra
P(M) for some partial commutative monoid M ; specifically subalgebras arising
from a particular closure operator. For the rest of this section we fix a partial
commutative monoid M .

Definition 9. A Moore collection is a family of sets C ⊆ P(M) that is closed
under arbitrary intersections:

(∀i ∈ I. Ai ∈ C) =⇒
⋂
i∈I

Ai ∈ C.

If X ∈ C we say that X is closed.

Alternatively, a Moore collection can be given in terms of a closure operator
cl(−) satisfying the following conditions:

• X ⊆ cl(X);
• monotonicity: X ⊆ Y =⇒ cl(X) ⊆ cl(Y);
• idempotence: cl(cl(X)) = cl(X).

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 13

Given a Moore collection C we define the associated closure operator as cl(X) =⋂
{Y ∈ C | X ⊆ Y }. In the other direction, given a closure operator we define

cl(−)-closed sets as C = {X | cl(X) = X}.
Some basic theory behind posets with such a closure operator is given in [20].

Here, we recall only the results that we will be needing. First of all, we are
going to use the following rule often.

Lemma 10 (cl_adj). The closure operator satisfies the following adjunction
rule:

X ⊆ Y in P(M)

cl(X) ⊆ Y in C

for a closed set Y .

Since C is closed under intersections, X ∩ Y is a meet of two closed sets X
and Y . However, given two closed sets, their union X ∪ Y is not always closed.
Instead, we interpret join as cl(X ∪ Y).

Proposition 11. The collection C is a complete bounded lattice: the least upper
bound is given by

∨
i∈I Xi = cl(

⋃
i∈I Xi). In particular, the bottom element of

C is cl(∅).

It is not necessarily the case that C has Heyting implication, but if it does,
then we can describe it in terms of the implication on P(M) and a dual of the
closure operator.

Proposition 12 (impl_from_int). For a set X ∈ P(M), we write int(X) for
the largest closed set contained in X:

int(X) =
∨

{Y ∈ C | Y ⊆ X}.

Then for closed sets X and Y ,

X → Y = int(X ⊃ Y)

where X ⊃ Y denotes implication in P(M).

Proof We reason as follows:

int(X ⊃ Y) =
∨

{Z ∈ C | Z ⊆ X ⊃ Y }

=
∨

{Z ∈ C | Z ∩X ⊆ Y }

=
∨

{Z ∈ C | Z ⊆ X → Y } = X → Y

□

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.algebra.from_closure.html#cl_adj
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.algebra.from_closure.html#impl_from_int

Springer Nature 2021 LATEX template

14 Semantic Cut Elimination for BI

In light of the previous propositions, we can see that some Heyting algebra
structure on C arises from the same operations on P(M). Can we similarly lift
the BI operations? Let us denote the residuated monoidal structure (defined
as in Section 4.1) on P(M) as (0, •,−•). In the rest of this section we describe
how to lift this structure to C.

5.1 BI Algebra Structure on Closed Sets
A sufficient condition for C to be a BI algebra is the following.

Definition 13. We say that the closure operator is strong if for any X and Y

cl(X) • Y ⊆ cl(X • Y)

If cl(−) is strong, then we define the BI operators on C as follows:

Emp = cl(0)

X ∗ Y = cl(X • Y)

X −∗ Y = cl(X −• Y)

We shall verify that with these connectives C is a BI algebra.

Proposition 14 (wand_intro_r, wand_elim_l’). There is an adjunction
between ∗ and −∗:

X ∗ Y ⊆ Z ⇐⇒ X ⊆ Y −∗ Z.

Proof We reason as follows.

X ∗ Y ⊆ Z (def. of ∗)
⇐⇒ cl(X • Y) ⊆ Z (Z is closed)
⇐⇒ X • Y ⊆ Z (adjunction)
⇐⇒ X ⊆ Y −• Z
=⇒ X ⊆ cl(Y −• Z) (def. of −∗)
⇐⇒ X ⊆ Y −∗ Z.

On the other hand,

X ⊆ cl(Y −• Z) (monotonicity of •)
=⇒ X • Y ⊆ cl(Y −• Z) • Y (strength of cl(−))
=⇒ X • Y ⊆ cl((Y −• Z) • Y)

=⇒ X • Y ⊆ cl(Z) = Z

⇐⇒ cl(X • Y) ⊆ Z.

□

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.algebra.from_closure.html#wand_intro_r
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.algebra.from_closure.html#wand_elim_l'

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 15

Proposition 15 (sep_comm’, sep_assoc’, and emp_sep_1, emp_sep_2).
(C, ∗,Emp) is a commutative monoid.

Proof The commutativity of ∗ is evident from its definition. Let us verify the unit
laws:

Emp ∗X = cl(cl(0) • X) ⊆ cl(cl(0 • X)) = X

X = 0 • X ⊆ cl(0) • X ⊆ cl(cl(0) • X) = Emp ∗X.
We reason similarly for associativity of ∗. □

We can summaries these results in the following theorem.

Theorem 16. Let M be a PCM, and let cl(−) be a strong closure operator on
P(M), such that C has Heyting implication. Then the set C of closed elements
is a BI algebra.

Finally, some times it is more convenient to use an alternative condition in
place of closure strength:

Proposition 17. The closure operator is strong iff X −• Y is closed whenever
Y is closed, i.e. C forms an exponential ideal.

Proof Suppose that C is an exponential ideal w.r.t −•. Then we reason as follows:
cl(X) • Y ⊆ cl(X • Y)

cl(X) ⊆ Y −• cl(X • Y)

X ⊆ Y −• cl(X • Y) (the r.h.s. is closed)
X • Y ⊆ cl(X • Y)

Hence, cl(−) is strong.
For the other direction, if Y is closed, then

cl(X −• Y) ⊆ X −• Y ⇐⇒ cl(X −• Y) • X ⊆ Y

⇐= cl((X −• Y) • X) ⊆ Y

⇐⇒ (X −• Y) • X ⊆ Y

□

A remark on (im)predicativity.
In practice, we want to start with some collection B ⊆ P(M) of sets, and gener-
ate C freely from arbitrary intersections of elements of B (think of generating a
topology from a closed basis). Then C is a Moore collection and the associated
closure operator can be given as cl(X) =

⋂
{Y ∈ C | X ⊆ Y }. Unfortunately,

this definition is impredicative (we define an element of C by quantifying over
elements of C), which, when formalized in type theory, increases the universe
level.

That means that we cannot use the closure operator to define the set C,
i.e. the set {X | X = cl(X)} will have a higher universe level than C. To

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.algebra.from_closure.html#sep_comm'
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.algebra.from_closure.html#sep_assoc'
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.algebra.from_closure.html#emp_sep_1
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.algebra.from_closure.html#emp_sep_2

Springer Nature 2021 LATEX template

16 Semantic Cut Elimination for BI

circumvent this, we can instead define the closure operator equivalently by
quantifying not over all the closed sets, but only over the basic closed sets:
cl(X) =

⋂
{Y ∈ B | X ⊆ Y }. Then we can define C to be the set of elements

satisfying X = cl(X).

6 Cut-elimination via a Syntactic Model
In this section we construct a special BI algebra C ⊆ P(Bunch) that has the
following property: if JφK ≤ JψK holds in C, then φ ⊢cf ψ. By composing this
with the soundness theorem, we will obtain the cut-elimination result.

6.1 Principal Closed Sets
We are going to construct C as a particular Moore collection on P(Bunch). To
define when a predicate X is closed (e.g. when X ∈ C), we start with principal
closed elements, and generate C as families of intersections of principal closed
sets.

Definition 18. A principal closed set is a set of the form:

⟨φ⟩ = {∆ | ∆ ⊢cf φ}

for a formula φ.

We can then generate closed sets by closing the collection of principal closed
sets under arbitrary intersections:

cl(X) ≜
⋂

{⟨φ⟩ | X ⊆ ⟨φ⟩} =
⋂

{⟨φ⟩ | ∀∆ ∈ X.∆ ⊢cf φ}.

We then define the collection C of closed sets as

C ≜ {X | X = cl(X)}.

Then every element of C can be written as some intersection
⋂

i∈I⟨φi⟩.
Let us briefly describe some useful properties of closed sets:

Proposition 19 (C_inhabited, C_weaken, C_contract, and C_collapse).
Let X be a closed set. Then the following holds.

1. False ∈ X;
2. ∆ ∈ X =⇒ (∆ ; ∆′) ∈ X;
3. (∆ ; ∆) ∈ X =⇒ ∆ ∈ X;
4. ∆ ∈ X ⇐⇒ (∆)∗ ∈ X.

Proof For the first point, observe that False ⊢cf φ, so False ∈ ⟨φ⟩ for any formula φ.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#C_inhabited
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#C_weaken
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#C_contract
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#C_collapse

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 17

For the second point, let X be
⋂

i∈I⟨φi⟩. Then, ∆ ∈ X ⇐⇒ ∀i ∈ I.∆ ⊢cf φi. If
∆ ∈ X, then, using weakening:

∆ ⊢cf φi

∆ ; ∆′ ⊢cf φi

for any i ∈ I. Hence, ∆; ∆′ ∈ X.
Similarly for the other two cases, using contraction, and the left rules, and

Corollary 5. □

As an example of a calculation in C, we show the following characterization
of meets.

Proposition 20 (C_and_eq). The following holds in C:

X ∧ Y = cl({∆ ; ∆′ | ∆ ∈ X,∆′ ∈ Y })

Proof For the inclusion from left to right: suppose that ∆ ∈ X ∩ Y . Then,

(∆ ; ∆) ∈ {∆ ; ∆′ | ∆ ∈ X,∆′ ∈ Y }

⊆ cl({∆ ; ∆′ | ∆ ∈ X,∆′ ∈ Y }).
From Proposition 19 we get

∆ ∈ cl({∆ ; ∆′ | ∆ ∈ X,∆′ ∈ Y }).
For the inclusion from right to left: it suffices to show:

{∆ ; ∆′ | ∆ ∈ X,∆′ ∈ Y } ⊆ X ∩ Y.
If ∆ ∈ X and ∆′ ∈ Y , then ∆ ; ∆′ ∈ X ∩ Y by Proposition 19. □

6.2 BI Structure
In order to apply Theorem 16 and obtain a BI algebra structure on C, we
have to ensure that the Heyting implication of closed sets is closed, and that
X −• Y ∈ C whenever Y ∈ C.

For the following lemma we will use the fact that the −∗R is invertible and
Corollary 5.

Lemma 21 (wand_is_closed). If Y is closed, then so is X −• Y ; furthermore,
it can be described as:

X −• Y = {∆ | ∀∆′ ∈ X. (∆ ,∆′) ∈ Y }.

Proof It is straightforward to check that X −• Y defined as above is indeed a right
adjoint to the • operation. Thus, it remains to show that X −• Y is closed.

Since Y is closed, it can be written as an intersection of some family of principal
closed sets: Y =

⋂
j∈J ⟨φj⟩. Then, we claim,

X −• Y =
⋂

(∆′,j)∈X×J

⟨(∆′)∗ −∗ φj⟩.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#C_and_eq
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#wand_is_closed

Springer Nature 2021 LATEX template

18 Semantic Cut Elimination for BI

Direction from left to right: let ∆ ∈ X −• Y , and let (∆′, j) ∈ X × J . We are to
show: ∆ ⊢cf (∆

′)∗ −∗ φj . We argue as follows:

∆ ,∆′ ⊢cf φj

∆ , (∆′)∗ ⊢cf φj

∆ ⊢cf (∆
′)∗ −∗ φj

Direction from right to left: suppose that

∆ ∈
⋂

(∆′,j)∈X×J

⟨(∆′)∗ −∗ φj⟩,

and let ∆′ ∈ X. We are to show ∆ ,∆′ ⊢cf φj for any j ∈ J . By the assumption we
have

∆ ⊢cf (∆
′)∗ −∗ φj .

We then reason similarly as in the previous direction, but using inversions Lemma 2
and corollary 5:

∆ ⊢cf (∆
′)∗ −∗ φj

∆ , (∆′)∗ ⊢cf φj

∆ ,∆′ ⊢cf φj

□

We can give a similar characterization of the Heyting implication in C:

Proposition 22 (has_heyting_impl). For every closed X,Y , the Heyting
implication is closed and can be described as:

X → Y = {∆ | ∀∆′ ∈ X, (∆ ; ∆′) ∈ Y }.

Proof Using Proposition 20, it is straightforward to check that X → Y as defined
above is a right adjoint to the meet operation ∩. The proof of closedness follows the
proof of Lemma 21. □

To sum up, by Theorem 16 we have a BI algebra C in which operations are
defined as follows:

Emp = cl({∅m}) ⊤ = Bunch

⊥ = cl(∅) X ∨ Y = cl(X ∪ Y) X ∗ Y = cl({∆ ,∆′ | ∆ ∈ X,∆′ ∈ Y })

X ∧ Y = cl({∆ ; ∆′ | ∆ ∈ X,∆′ ∈ Y })

X −∗ Y = {∆ | ∀∆′ ∈ X. (∆ ,∆′) ∈ Y }

X → Y = {∆ | ∀∆′ ∈ X. (∆ ; ∆′) ∈ Y }

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#has_heyting_impl

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 19

6.3 Fundamental Property of C
We can interpret formulas in the model C by picking the interpretation of
atomic propositions to be JaK = ⟨a⟩. Now we are ready to prove the main
theorem: if JφK ⊆ JψK, then φ ⊢cf ψ. To obtain this, we prove the following
property, due to Okada [16].

Lemma 23 (okada_property). For any formula φ,

φ ∈ JφK ⊆ ⟨φ⟩

(where the leftmost instance of φ is a bunch consisting of a single leaf with the
formula φ).

Proof By induction on φ.
Case φ = False. We have JFalseK = cl(∅). Clearly, cl(∅) ⊆ ⟨φ⟩, because ⟨φ⟩ is

closed and ∅ ⊆ ⟨φ⟩. By Proposition 19 we have False ∈ JFalseK.
Case φ = True. We have JTrueK = Bunch = ⟨True⟩.
Case φ = Emp. In order to show JEmpK = cl({∅m}) ⊆ ⟨Emp⟩, it suffices to

show {∅m} ⊆ ⟨Emp⟩, by the characterization of the closure operator. That inclusion
holds because ∅m ⊢cf Emp. In order to show Emp ∈ cl({∅m}), it suffices to show
∅m ∈ cl({∅m}) by Proposition 19, which holds trivially.

Case φ = ψ1 ∗ ψ2. In order to show the set inclusion Jψ1 ∗ ψ2K = cl(Jψ1K •
Jψ2K) ⊆ ⟨ψ1 ∗ψ2⟩, it suffices to show Jψ1K • Jψ2K ⊆ ⟨ψ1 ∗ψ2⟩, by the characterization
of the closure operator. If (∆1,∆2) ∈ Jψ1K • Jψ2K, then, by the induction hypothesis
∆i ⊢cf ψi, and we can reason as follows:

∆1 ⊢cf ψ1 ∆2 ⊢cf ψ2

∆1,∆2 ⊢cf ψ1 ∗ ψ2

Hence, (∆1,∆2) ∈ ⟨ψ1 ∗ ψ2⟩.
As for the element inclusion ψ1 ∗ψ2 ∈ cl(Jψ1K • Jψ2K), note that by Proposition 19

it suffices to show (ψ1, ψ2) ∈ cl(Jψ1K • Jψ2K), which is evident from the induction
hypotheses.

Case φ = ψ1∧ψ2. In order to show the set inclusion, suppose that ∆ ∈ Jψ1∧ψ2K =
Jψ1K ∩ Jψ2K. Then, by the induction hypothesis, ∆ ∈ ⟨ψ1⟩ ∩ ⟨ψ2⟩, and we can reason
as follows:

∆ ⊢cf ψ1 ∆ ⊢cf ψ2

∆ ; ∆ ⊢cf ψ1 ∧ ψ2

∆ ⊢cf ψ1 ∧ ψ2

As for the element inclusion ψ1 ∧ ψ2 ∈ Jψ1K ∩ Jψ2K, we argue as follows. By the
induction hypothesis, ψ1 ∈ Jψ1K. By Proposition 19 (item 1), (ψ1; ψ2) ∈ Jψ1K, and
by Proposition 19 (item 3), ψ1 ∧ ψ2 ∈ Jψ1K. Similarly we can show ψ1 ∧ ψ2 ∈ Jψ2K.

Case φ = ψ1 −∗ ψ2. In order to show Jψ1 −∗ ψ2K = Jψ1K −∗ Jψ2K ⊆ ⟨ψ1 −∗ ψ2⟩,
suppose that ∆ ∈ Jψ1K −∗ Jψ2K. We are to show ∆ ⊢cf ψ1 −∗ ψ2. By the induction
hypothesis, ψ1 ∈ Jψ1K; hence

(∆ , ψ1) ∈ Jψ2K ⊆ ⟨ψ2⟩.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#okada_property

Springer Nature 2021 LATEX template

20 Semantic Cut Elimination for BI

We can then reason using the right rule for −∗:

∆ , ψ1 ⊢cf ψ2

∆ ⊢cf ψ1 −∗ ψ2

In order to show ψ1 −∗ ψ2 ∈ Jψ1K −∗ Jψ2K, suppose that ∆ ∈ Jψ1K. We are to
show (∆ , ψ1 −∗ ψ2) ∈ Jψ2K. Let us write Jψ2K as

⋂
i∈I⟨φi⟩. Then our goal can be

reduced to showing
∆ , ψ1 −∗ ψ2 ⊢cf φi

for any i ∈ I. We argue as follows, using the left rule for −∗:

∆ ⊢cf ψ1 ψ2 ⊢cf φi

∆ , ψ1 −∗ ψ2 ⊢cf φi

where the first assumption holds because ∆ ∈ Jψ1K ⊆ ⟨ψ1⟩ and the second assumption
holds because ψ2 ∈ ⟨ψ2⟩.

Case φ = ψ1 → ψ2. Similarly to the case φ = ψ1 −∗ ψ2, using the characterization
of the Heyting implication in C.

Case φ = ψ1∨ψ2. In order to show Jψ1∨ψ2K = Jψ1K∨Jψ2K ⊆ ⟨ψ1∨ψ2⟩, it suffices
to show Jψ1K ⊆ ⟨ψ1 ∨ ψ2⟩ and Jψ2K ⊆ ⟨ψ1 ∨ ψ2⟩. To show that JψiK ⊆ ⟨ψ1 ∨ ψ2⟩, for
i = 1, 2, it suffices to show ⟨ψi⟩ ⊆ ⟨ψ1 ∨ ψ2⟩. We show that using the right rules for
disjunction.

To show ψ1 ∨ ψ2 ∈ Jψ1 ∨ ψ2K = cl(Jψ1K ∪ Jψ2K), we appeal to the definition of
cl(−): Let φ be a formula such that Jψ1K∪ Jψ2K ⊆ ⟨φ⟩. We are to show ψ1 ∨ψ2 ∈ ⟨φ⟩,
i.e. ψ1 ∨ψ2 ⊢cf φ. By assumption we have ψi ∈ JψiK, for i = 1, 2, and, hence ψi ∈ ⟨φ⟩,
or, equivalently, ψi ⊢cf φ. We obtain the desired result using ∨L. □

Theorem 24 (C_interp_cf). If J(∆)∗K ≤ JφK holds in C, then ∆ ⊢cf φ.

Proof By Lemma 23, we have (∆)∗ ∈ J(∆)∗K, and hence (∆)∗ ∈ JφK. By Proposi-
tion 19 we have furthermore have ∆ ∈ JφK which is equivalent to ∆ ⊢cf φ. □

As a consequence, we get the cut admissibility:

Theorem 25 (cut). The cut rule is admissible in the cut-free fragment ⊢cf

of BI.

Proof Suppose ∆ ⊢cf ψ and Γ(ψ) ⊢cf φ. We are to show that Γ(∆) ⊢cf φ. By
Theorem 24 it suffices to show that J(Γ(∆))∗K ≤ JφK holds in C.

From soundness we have that J(∆)∗K ≤ JψK. By induction on Γ we can show that
J(Γ(∆))∗K ≤ J(Γ(ψ))∗K, from which we obtain

J(Γ(∆))∗K ≤ J(Γ(ψ))∗K ≤ JφK.

□

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#C_interp_cf
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#cut

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 21

Overview.
In the next sections we will be looking at adjusting the construction of C
to extensions of BI. At this point we would like to give an overview of the
argument, and see what kind of conditions we need.

• To show that the closure operator cl(−) is strong, we had to use invertibility
of certain rules. Firstly, we used the fact that BI satisfies a strong form of
the deduction theorem for both implications (the rules →R and −∗R are
invertible). Secondly, we used the fact that the left rules are invertible for
connectives that form bunches (EmpL, TrueL, ∧L, ∗L).

• Additionally, we need to verify that all the rules of sequent calculus are
validated in C.

• Finally, we need to show that Okada’s property (Lemma 23) holds in C.
This list gives us a sort of roadmap for extending the cut elimination

argument. For every rule that we want to add to BI, we need to re-verify the
invertibility of certain rules, and that the rule is validated in C. If we want to
add a new connective to the system, we need to additionally come up with the
interpretation of this connective on C, and re-verify Okada’s property.

7 Extending the Logic: Analytic Structural Rules
An important extension of BI is affine BI, which extends the sequent calculus
of Figure 1 with the weakening rule for ,:

W,
∆(∆1) ⊢ φ

∆(∆1 ,∆2) ⊢ φ

An algebraic structure for interpreting affine BI is a BI algebra in which the
following inequality holds: p ∗ q ≤ p. Can we extend the argument presented
so far to cover affine BI? As we discussed at the end of the previous section,
because we are adding a new rule, we have to make sure that the analogues of
Lemma 2 and Lemma 4 still hold (the appropriate rules are invertible), and
that C validates the inequality X ∗ Y ⊆ X.

To verify that X ∗ Y ⊆ X it suffices to verify that X • Y ⊆ X, since X is
closed. Let us write X =

⋂
i∈I⟨φi⟩. Suppose that ∆1 ∈ X,∆2 ∈ Y . We are to

show that ∆1 ,∆2 ⊢cf φi for any i; however we know that ∆1 ⊢cf φi by the
assumption, and the desired result follows by W,.

This kind of argument for W, can be generalized to infinitely many struc-
tural rules of a particular shape, which we call, following [21], analytic structural
rules. In the remainder of this section we show how to define such analytic struc-
tural rules, and we prove cut elimination for BI extended with any combination
of such rules.

Springer Nature 2021 LATEX template

22 Semantic Cut Elimination for BI

7.1 Analytic Structural Rules and Bunched Terms
Structural rules are rules of the shape

Π(T1[∆1, . . . ,∆n]) ⊢ φ . . . Π(Tm[∆1, . . . ,∆n]) ⊢ φ
Π(T [∆1, . . . ,∆n]) ⊢ φ

where T1, . . . , Tm, T are bunched terms – bunches built out of connectives ,, ; ,
and variables x1, . . . , xn. The notation Ti[∆⃗] stands for the bunch obtained
from Ti by replacing all the variables xj with ∆j . A structural rule is analytic
if the bunched term T in the conclusion is linear, that is, every variable in T
occurs at most once.

We identify a structural rule with a tuple ({T1, . . . , Tm}, T). For example,
the rule W, above is represented with a tuple ({x1}, x1 , x2). If L is a set of
tuples corresponding to analytic structural rules, we write BI+L for a sequent
calculus of BI extended with the structural rules from L.

For the rest of this section, we fix a finite collection L of analytic structural
rules and the extended system BI+L. We write ⊢cf for cut-free provability in
BI+L, and we denote by C the BI algebra constructed in Section 6, but for
BI+L-provability.

Firstly, we need to check that the construction of C works out. We need
to verify that the rules →L, −∗L, ∧L, ∗L, TrueL, EmpL are still invertible, in
presence of the additional rules from L. For that, we just follow the proof of
Lemma 4.

7.2 Interpretation of Structural Rules in C
Additionally, we need to verify that C validates all the rules from L.

Each bunched term T [x1, . . . , xn] can be interpreted as a function JT K :
An → A on any BI algebra A. For example, a (non-linear) bunched term
(x1 , x2) ; x1 gives rise to a mapping (X1, X2) 7→ (X1 ∗X2) ∧X1.

In order to interpret a structural rule given by a tuple ({T1, . . . , Tm}, T)
in a BI algebra A, we require that the following inequality holds in A for any
a1, . . . , an ∈ A:

JT K(a1, . . . , an) ≤ JT1K(a1, . . . , an) ∨ · · · ∨ JTmK(a1, . . . , an).

In this case, we say that A validates the structural rule. For example, recall
that the weakening rule W, for , is represented as ({x1}, (x1 , x2)). Then the
associated inequality is:

Jx1 , x2K(p, q) ≤ Jx1K(p, q) ⇐⇒ p ∗ q ≤ p.

Lemma 26 (seq_interp_sound). If a BI algebra A validates the rules in L,
then ∆ ⊢ φ implies J∆K ≤ JφK in A.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc.html#Seqcalc.seq_interp_sound

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 23

Proof For the case of a structural rule ({T1, . . . , Tm}, T), we assume that JTiK(ā) ≤
JφK holds for any 1 ≤ i ≤ m. Then,

∨
1≤i≤mJTiK(ā) ≤ JφK. Since the rule is validated

in A we have
JT K(ā) ≤

∨
1≤i≤m

JTiK(ā) ≤ JφK.

□

In order to show that C validates all the rules from L, we need the following
lemmas about JT K. For the algebra C we have the following description:

Lemma 27 (bterm_C_refl). Let X1, . . . , Xn ∈ C, and ∆i ∈ Xi for 1 ≤ i ≤ n.
Then for any bunched term T ,

T [∆⃗] ∈ JT K(X⃗)

Proof By induction on T . □

Lemma 28 (blinterm_C_desc’). For any X1, . . . , Xn ∈ C and any linear
bunched term T we have

JT K(X1, . . . , Xn) = cl({T [∆1, . . . ,∆n] | ∆i ∈ Xi, 1 ≤ i ≤ n})

Proof In view of Lemma 27 it suffices to show that the left-hand side is included in
the right-hand side. This is done by induction on T . We show only the case for ,, as
the other case is similar. If T (x⃗) = F (x⃗) , U(x⃗), then, since T is linear, we can write
it down as

T (y⃗z⃗) = F (y⃗) , U(z⃗)

for some factorization y⃗z⃗ = x⃗, and for some linear terms F and U . By the induction
hypothesis we have

JT K(Y⃗ Z⃗) = cl(cl({F [Γ⃗] | Γ⃗ ∈ Y⃗ }) • cl({U [Γ⃗] | Γ⃗ ∈ Z⃗})).
In order to show the inclusion into cl({T [∆⃗] | ∆⃗ ∈ Y⃗ Z⃗}) it suffices to show

{F [Γ⃗] | Γ⃗ ∈ Y⃗ } • {U [Γ⃗] | Γ⃗ ∈ Z⃗} ⊆ {T [∆⃗] | ∆⃗ ∈ Y⃗ Z⃗}.
Let Γ⃗ ∈ Y⃗ and Θ⃗ ∈ Z⃗. Then, Γ⃗Θ⃗ ∈ X⃗, and, hence F [Γ⃗] , U [Θ⃗] = T [Γ⃗Θ⃗], which
concludes the proof the inclusion. □

With the two lemmas at hand we can prove that C is a model of BI+L.

Lemma 29 (C_extensions). Every rule from the set L is validated in C.

Proof Suppose that ({T1, . . . , Tm}, T) is a simple structural rule from L. We have to
show JT K(X⃗) ⊆ cl(

⋃
1≤i≤mJTiK(X⃗)). By Lemma 28, it suffices to show

{T [∆1, . . . ,∆n] | ∆⃗ ∈ X⃗} ⊆ cl(
⋃

1≤i≤m

JTiK(X⃗))

where ∆⃗ ∈ X⃗ is a shorthand for ∆i ∈ Xi for all 1 ≤ i ≤ n.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#bterm_C_refl
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#blinterm_C_desc'
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#C_extensions

Springer Nature 2021 LATEX template

24 Semantic Cut Elimination for BI

Suppose that φ is such that
⋃

1≤i≤nJTiK(X⃗) ⊆ ⟨φ⟩. We are to show that T [∆⃗] ⊢cf

φ, for any ∆⃗ ∈ X⃗. By Lemma 27, we have Ti[∆⃗] ∈ JTiK(X⃗) ⊆ ⟨φ⟩. So we get
Ti[∆⃗] ⊢cf φ, from which we can conclude that T [∆⃗] ⊢cf φ □

We can summarize the results of this section in the following theorem.

Theorem 30 (cut). Let L be an arbitrary set of analytic structural rules.
Then the cut rule is admissible in the cut-free fragment ⊢cf of BI+L.

8 Analytic Completion
In the previous section we have seen that the semantic proof of cut-elimination
works well for extensions of BI with analytic structural rules. However, a lot
of usual extensions of BI are not given in terms of analytic structural rules.
For example, the following “restricted weakening” rule, corresponding to an
equation p ≤ p ∗ p, is not in an analytic form:

W-restr
Π(∆) ⊢ φ

Π(∆ ,∆) ⊢ φ

because the bunch meta-variable ∆ occurs twice in the conclusion. In this
section we show that any structural rule, e.g. any rule of the shape

Π(T1[∆1, . . . ,∆n]) ⊢ φ . . . Π(Tm[∆1, . . . ,∆n]) ⊢ φ
Π(T [∆1, . . . ,∆n]) ⊢ φ

,

can be transformed into an equivalent analytic rule through the process known
as analytic completion. Analytic completion was developed for extensions of
Lambek calculus by Ciabattoni et al [21]; we adapt the analytic completion to
the setting of BI. We describe this process informally first, before proving its
correctness.

8.1 Analytic completion procedure
For the remainder of the section, let us fix the following (non-analytic) structural
rule as a running example:

RS
Π(∆1 ,∆2) ⊢ φ

Π((∆1 ,∆1) ; ∆2) ⊢ φ

which corresponds to the equation (p∗p)∧q ≤ p∗q. The corresponding bunched
terms are T [X1, X2] = (X1 ,X1) ; X2 for the conclusion and T1[X1, X2] =
X1 ,X2 for the premise.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim.html#cut

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 25

The analyic completion proceeds in two steps: first, making the conclusion
linear, thus turning a rule into an analytic one; second, adjusting the premises
to match the newly linearized conclusion.

Linearizing the conclusion.
Let us describe the linearization step first, i.e. making the term T in the
conclusion linear.

Definition 31 (linearize_bterm, linearize_bterm_ren). Given a term T ,
a linearization of T is a term T • obtained by replacing every occurrence of a
variable in T with a fresh variable. The linearization comes with an associated
renaming function rT mapping each fresh variable of T • to an “old” variable of
T .

Continuing with the example of the structural rule RS, the term in the
conclusion is T [X1, X2] = (X1,X1); X2. Linearizing it we get T •[Y1, Y2, Y3] =
(Y1 , Y2) ; Y3. The associated renaming function is then given by rT (Y1) =
rT (Y2) = X1 and rT (Y3) = X2. Since the choices of variable names do not
actually matter, we can assume that all the variables come from the same pool
X1, X2, . . . , and the renaming function operates on indices. In the previous
example, we could write rT (1) = rT (2) = 1 and rT (3) = 2.

The relation between the linearized term and the associated renaming
function is established in the following lemma:

Lemma 32 (linearize_bterm_act_ren). Let T be a bunched term with n
variables, and let T • be its linearization with k > n variables.

T [X1, . . . , Xn] = T •[XrT (1), . . . , XrT (k)].

In our running example RS, we have T [X1, X2] = T •[X1, X1, X2].
A formal definition of the linearization function depends on the exact

representation of terms. For these reasons we defer it to Section 10.4, where
we describe the Coq representation of terms and the implementation of the
analytic completion.

Adjusting the premises.
Now that we have linearized the bunched term in the conclusion, we need
to adjust the premises in such a way that we obtain an equivalent structural
rule. The question is, how do we update the premises in such a way that the
resulting structural rule is equivalent to the one we started with? One way to
being answering this question is to see in what ways we can apply the original
structural rule to the linearized conclusion?

In the running example RS, the linearized conclusion is T •[X1, X2, X3] =
(X1,X2); X3; or, written as a propositional formula, (x1 ∗x2)∧x3. We cannot
apply the inequality (p∗p)∧q ≤ p∗q directly to that formula, because we cannot

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.terms.html#linearize_bterm
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.terms.html#linearize_bterm_ren
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.analytic_completion.html#linearize_bterm_act_ren

Springer Nature 2021 LATEX template

26 Semantic Cut Elimination for BI

unify x1 and x2. Note, however, that we can obtain a common proposition
x1 ∨ x2 from both of those propositions. This leads us to the following chain of
inequalities

(x1∗x2)∧x3 ≤
(
(x1∨x2)∗(x1∨x2)

)
∧x3 ≤ (x1∨x2)∗x3 = (x1∗x3)∨(x2∗x3),

where the second inequality corresponds to the application of the original rule
RS. Note that in the conclusion we have T1[x1, x3] ∨ T1[x2, x3].

As we can see, in place of the variable x1 in the original bunched term T ,
we plugged in the disjunction x1∨x2, because both x1 and x2 are renamed into
x1 by the renaming function rT . Then, when applying the inequality, instead
of the original premise T1[x1, x2], we get a disjunction T1[x1, x3] ∨ T1[x2, x3]
where rT renames x1 and x2 into x1 and x3 into x2. To see this more clearly,
we can rewrite the obtained proposition as:∨

{T1[xi, xj] | rT (i) = 1, rT (j) = 2}.

If this is the result of applying the original rule to the linearized conclusion,
then we can just take this result to be the new set of premises: T1[x1, x3] and
T1[x2, x3]. For example, the resulting analytic version of RS is

RS’
Π(Θ1 ,Θ3) ⊢ φ Π(Θ2 ,Θ3) ⊢ φ

Π((Θ1 ,Θ2) ; Θ3) ⊢ φ

Here we used the variable names Θ, to further contrast RS’ with the original
rule RS. The original rule RS can be recovered by picking Θ1 = Θ2 = ∆1 and
Θ3 = ∆2, as described by the linearization function.

Using this example as an insight, we define the procedure transform(Ti)
which transforms a term Ti from the premise into a set of terms that we will
use as the premises of the analytic rule. More specifically, we transform each
term Ti in the premise into a set of terms as follows:

T ′[X1, . . . , Xk] ∈ transform(Ti) ⇐⇒
∃σ. T ′[X1, . . . , Xk] = Ti

•[Xσ(1), . . . , Xσ(n)] ∧ ∀j. σ(j) ∈ r−1
T (rTi(j))

We implemented a direct (intentional) and computable definition of this proce-
dure in Coq, which we detail in Section 10.4. For now, we can assume that we
can write transform(−) as a computable function.

Definition 33 (Analytic completion). Given a structural rule

Π(T1[∆1, . . . ,∆n]) ⊢ φ . . . Π(Tm[∆1, . . . ,∆n]) ⊢ φ
Π(T [∆1, . . . ,∆n]) ⊢ φ

,

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 27

we define its analytic completion to be the analytic structural rule

{Π(T ′
j [∆1, . . . ,∆k]) ⊢ φ | 1 ≤ i ≤ m,T ′

j ∈ transform(Ti)}
Π(T •[∆1, . . . ,∆k]) ⊢ φ

8.2 Correctness
In order to show that the obtained rule is equivalent to the one we started
with, we will require the following lemmas.

Lemma 34 (linearize_bterm_act). For any term T we have

T •[X1, . . . , Xk] ≤ T [
∨

{Xj | j ∈ r−1
T (1)}, . . . ,

∨
{Xj | j ∈ r−1

T (n)}]

Proof By induction on the structure of the term. □

In our running example, we used Lemma 34 to conclude (x1 ∗ x2) ∧ x3 ≤(
(x1 ∨ x2) ∗ (x1 ∨ x2)

)
∧ x3.

With this we can prove soundness.

Proposition 35 (Soundness, analytic_completion_sound). Suppose that
the original structural rule is satisfied in an algebra A. Then the analytic
completion of that rule is also satisfied in the same algebra.

Proof We are to show

JT •K[X1, . . . , Xk] ≤
∨

1≤i≤m, T ′
j∈transform(Ti)

JT ′
jK[X1, . . . , Xk],

where X⃗ ∈ A. Then, by Lemma 34 we have

JT •K[X1, . . . , Xk] ≤ JT K[Y1, . . . , Yn],

where Yi =
∨
{Xj | j ∈ r−1

T (i)}.
We know that the original rule holds in A. Then,

JT K[Y1, . . . , Yn] ≤ JTiK[Y1, . . . , Yn],

for some premise term Ti.
Then, by induction on the term Ti we can prove

JTiK[Y1, . . . , Yn] ≤
∨

T ′
j∈transform(Ti)

JT ′
jK[X1, . . . , Xk].

The idea for this proof is to select, for each disjunction
∨
{Xj | j ∈ r−1

T (l)} associated
to the l-th variable a representative Xl

j for j ∈ r−1
T (l) that actually holds in the

disjunction. This choice of Xl
j for each 1 ≤ j ≤ n will determine the renaming σ,

which signifies which premise from the set transform(Ti). □

For completeness we will also need the following lemma

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.analytic_completion.html#linearize_bterm_act
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.analytic_completion.html#analytic_completion_sound

Springer Nature 2021 LATEX template

28 Semantic Cut Elimination for BI

Lemma 36 (transformed_premise_act_ren). Let T ′
i ∈ transform(Ti). Then,

Ti[X1, . . . , Xn] = T ′
i [XrT (1), . . . , XrT (k)].

Proof By definition, if T ′
i ∈ transform(Ti), then

T ′
i [XrT (1), . . . , XrT (k)] = Ti

•[XrT (σ(1)), . . . , XrT (σ(n))],

for σ satisfying σ(j) ∈ r−1
T (rTi

(j)). Then, for any j we have rT (σ(j)) = rTi
(j).

Therefore we have

Ti
•[XrT (σ(1)), . . . , XrT (σ(n))] = Ti

•[XrTi
(1), . . . , XrTi

(n)] = Ti[X1, . . . , Xk],

where the last equality follows from Lemma 32 □

Proposition 37 (Completeness, analytic_completion_complete). Suppose
that the analytic completion of a structural rule is satisfied in an algebra A.
Then that rule is also satisfied in the same algebra.

Proof We are to show

JT K[Y1, . . . , Yn] ≤
∨

1≤i≤m

JTiK[Y1, . . . , Yn]

where Y⃗ ∈ A. Then, by Lemma 32, we have

JT K[Y1, . . . , Yn] = JT •K[YrT (1), . . . , YrT (k)].

From the assumption that the analytic closure of the rule holds, we then have

JT •K[YrT (1), . . . , YrT (k)] ≤ JT ′
jK[YrT (1), . . . , YrT (k)]

for some T ′
j ∈ transform(Ti) for some 1 ≤ i ≤ m.

Finally, by Lemma 36, we have

JT K[Y1, . . . , Yn] ≤ JT ′
jK[YrT (1), . . . , YrT (k)] = Ti[Y1, . . . , Yn].

□

Combining the results above with Theorem 30, we get the following theorem,
summarizing the results of this section.

Theorem 38. Let L be an arbitrary set of structural rules. Then the cut rule
is admissible in the cut-free fragment ⊢cf of BI+L.

9 Extending the Logic: an S4 Modality
In this section we look at a different kind of extension to BI, the one obtained by
“freely” adding an (intuitionistic) S4-like modality. This amounts to adding the
following rules (usual for intuitionistic formulation of S4 sequent calculus [22]):

□R
□∆ ⊢ A
□∆ ⊢ □A

□L
∆(A) ⊢ B
∆(□A) ⊢ B

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.analytic_completion.html#transformed_premise_act_ren
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.analytic_completion.html#analytic_completion_complete

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 29

where □∆ is the same as ∆, but with boxes □ put in front of all the formulas,
e.g.

□(∅m ; (φ , ψ) ; χ) ≜ ∅m ; (□φ ,□ψ) ; □χ.
We denote the extended system (the sequent calculus from Figure 1 with the
rules □R, □L above) as BIS4. We can verify that the relevant rules are still
invertible (a version of Lemma 4 and Lemma 2 for BIS4).

Interpreting the modality.
As per the roadmap at the end of Section 6 we need to interpret the modality
□ on C somehow. The usual way of interpreting a □ modality in intuitionistic
setting is with an interior operator (c.f. the notion of a CS4 algebra [23,
Definition 3]).

Definition 39. A BIS4 algebra is a tuple (B,□) where B is a BI algebra and
□ : B → B is a monotone function satisfying:

1. □p ≤ p;
2. □p ≤ □□p;
3. ⊤ = □⊤
4. Emp = □Emp;
5. □p ∧□q ≤ □(p ∧ q);
6. □p ∗□q ≤ □(p ∗ q).

We define the interior operator □ on C as:

□X ≜ cl({□∆ | ∆ ∈ X}).

In order to show that C satisfies the conditions from Definition 39, we will
use the following lemmas.

Lemma 40 (box_l_inv). The following rule is admissible:

□-idemp
Γ(□□∆) ⊢ φ
Γ(□∆) ⊢ φ

Proof By induction on the height of the derivation, similar to the proof of Lemma 4.
□

Lemma 41 (C_necessitate, C_bunch_box_idemp). Let X be a closed set.
• If ∆ ∈ X, then □∆ ∈ X.
• If □□∆ ∈ X, then □∆ ∈ X.

Proof By examining the definitions of □ and cl(−), using Lemma 40 for the second
item. □

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc_height_s4.html#box_l_inv
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim_s4.html#Cl.C_necessitate
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim_s4.html#Cl.C_bunch_box_idemp

Springer Nature 2021 LATEX template

30 Semantic Cut Elimination for BI

Lemma 42 (C_alg_box). (C,□) is a BIS4 algebra.

Proof The conditions (1) and (2) follow from Lemma 41. The conditions (3) and (4)
can be shown by examining the definitions of all the connectives involved.

The condition (6) can be shown as follows. To show □X ∗ □Y ⊆ □(X ∗ Y), we
reason as follows:

□X ∗□Y = cl(cl({□∆ | ∆ ∈ X}) • cl({□∆ | ∆ ∈ Y })) ⊆
cl(cl({□∆ | ∆ ∈ X} • cl({□∆ | ∆ ∈ Y }))) =
cl({□∆ | ∆ ∈ X} • cl({□∆ | ∆ ∈ Y })).

To show that

cl({□∆ | ∆ ∈ X} • cl({□∆ | ∆ ∈ Y })) ⊆ □(X ∗ Y)

it suffices to show that

{□∆ | ∆ ∈ X} • cl({□∆ | ∆ ∈ Y }) ⊆ □(X ∗ Y).

And, since

{□∆ | ∆ ∈ X} • cl({□∆ | ∆ ∈ Y })
⊆ cl({□∆ | ∆ ∈ X} • {□∆ | ∆ ∈ Y }),

it suffices to show

{□∆ | ∆ ∈ X} • {□∆ | ∆ ∈ Y } ⊆ □(X ∗ Y).

Let ∆ be such that ∆ = □∆1 ,□∆2, for ∆1 ∈ X, ∆2 ∈ Y . Then ∆ = □(∆1 ,∆2),
with ∆1 ,∆2 ∈ X ∗ Y .

Finally, the condition (5) is shown similarly. □

All it remains to verify is that Okada’s property (Lemma 23) still holds.
Since we have added only the □ modality we need to check one extra case:

Lemma 43. Assume that φ is such that φ ∈ JφK ⊆ ⟨φ⟩. Then

□φ ∈ J□φK ⊆ ⟨□φ⟩.

Proof In order to show the first inclusion, note that by the hypothesis, we have
φ ∈ JφK. Hence,

□φ ∈ {□∆ | ∆ ∈ JφK} ⊆ □JφK.
To show the second inclusion it suffices to show

{□∆ | ∆ ∈ JφK} ⊆ ⟨□φ⟩.

So, let us assume ∆ ∈ JφK. By the induction hypothesis we have ∆ ⊢cf φ, and, hence
□∆ ⊢cf □φ. Which gives us the desired result □∆ ∈ ⟨□φ⟩. □

Theorem 44 (cutelim_s4.cut). The cut rule is admissible in the cut-free
fragment ⊢cf of BIS4.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim_s4.html#Cl.C_alg_box
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.cutelim_s4.html#cut

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 31

10 The Coq Formalization
As we mentioned, the results of this paper has been formalized in the Coq proof
assistant. In this section we describe some of the design choices and trade-offs
that we made.

10.1 Sequent calculus and bunch decomposition
Instead of formalizing sequent calculus with the cut rule and deriving a cut-free
sequence calculus from that, we opted for formalizing just the cut-free sequent
calculus and proving that cut it admissible in that system. The sequent calculus
is then given as a standard inductive family of propositions in Coq.

The trickiest proofs to formalize about the sequent calculus were the admissi-
bility of the inverted rules (Lemma 4) in the cut-free sequent calculus. Firstly, as
was mentioned in Section 3, those admissibility proofs proceed by induction on
the height of the derivation. To handle this in the Coq formalization, we use an
auxiliary relation proves : bunch → formula → nat → Prop which includes
the (upper bound on the) height of the derivation. Our reasoning behind this
definition is that if we were to define a proof height function and do induction
on its value, we would have to formulate our goal (and the proof) in a rather
unwieldy way: we would have to package together the context, the formula, and
the derivation into a Σ-type: Σ (∆ : bunch) (φ : formula) , proves ∆ φ.

Secondly, even with induction on proof height, in the proof of Lemma 4 we
often end with a situation where we have a bunch ∆ that can be decomposed
multiple ways that we need to related to each other. For example, in the proof
of invertibility of ∗L, we want to obtain a proof of ∆0(φ , ψ) ⊢ χ from a proof
of ∆0(φ∗ψ) ⊢ χ. Suppose that the last applied rule in the proof was weakening

∆1(Γ1) ⊢cf χ

∆1(Γ1 ; Γ2) ⊢cf χ

with ∆1(Γ1 ; Γ2) = ∆0(φ ∗ ψ). In order to apply the induction hypothesis
we have to locate the formula φ ∗ ψ somewhere in the bunch ∆1(Γ1). The
formula may appear either in Γ1, Γ2, or be part of the bunched context ∆1(·),
depending on the relation between ∆0 and ∆1. This is an example of informal
observation that comes up often in the BI sequent calculus because all the left
rules (and structural rules) can be applied deep inside an arbitrary bunch. As
such, reasoning about what appears where in bunched contexts is of importance.

In order to reason about situations like this in Coq, we define an auxiliary
inductive system ∆ ⇝ ⟨Π(−) | ∆′⟩ that captures exactly when ∆ = Π(∆′).
The rules for the decomposition of bunches is given in Figure 2.

Lemma 45 (bunch_decomp_iff). ∆ = Π(∆′) if and only if ∆⇝ ⟨Π | ∆′⟩.

Using this inductive system we can prove the following lemmas about
decomposition of contexts, that we use for formalizing proofs from Section 3:

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc_height.html#SeqcalcHeight.proves
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.bunch_decomp.html#bunch_decomp
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.bunch_decomp.html#bunch_decomp
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.bunch_decomp.html#bunch_decomp_iff

Springer Nature 2021 LATEX template

32 Semantic Cut Elimination for BI

∆⇝ ⟨(−) | ∆⟩
∆1 ⇝ ⟨Π(−) | ∆⟩

∆1 ,∆2 ⇝ ⟨Π(−) ,∆2 | ∆⟩

∆2 ⇝ ⟨Π(−) | ∆⟩
∆1 ,∆2 ⇝ ⟨∆1 ,Π(−) | ∆⟩

∆1 ⇝ ⟨Π(−) | ∆⟩
∆1 ; ∆2 ⇝ ⟨Π(−) ; ∆2 | ∆⟩

∆2 ⇝ ⟨Π(−) | ∆⟩
∆1 ; ∆2 ⇝ ⟨∆1 ; Π(−) | ∆⟩

Fig. 2 Inductive rules for decomposition of bunches.

Lemma 46 (fill_is_frml). If Π(∆) = φ then Π is an empty context and
∆ = φ.

Lemma 47 (bunch_decomp_ctx). If Π(∆)⇝ ⟨Π′(−) | φ⟩ then one of the two
conditions hold:
• The formula φ appears in ∆ itself. That is, there is Π0(−) such that ∆⇝

⟨Π0(−) | φ⟩ and Π′(−) = Π(Π0(−)).
• Or the formula φ appears in the context Π(−). Then we can think of Π′(−)

as a context with two holes, one of which is already filled with ∆. Formally we
represent this situation as follows. There are functions Π0,Π1 from bunches
to bunched contexts, such that:

– For any bunch Λ, we have Π(Λ)⇝ ⟨Π0(Λ)(−) | φ⟩.
– For any bunch Λ, we have Π′(Λ)⇝ ⟨Π1(Λ)(−) | ∆⟩.
– For any bunches Λ,Λ′, we have Π0(Λ)(Λ

′) = Π1(Λ
′)(Λ).

In order to prove the invertibility of relevant rules for BIS4 (Section 9),
including Lemma 40 we related bunch decomposition and the □ modality:

Lemma 48 (bunch_decomp_box). If □∆ = Π(□φ), then there is a bunched
context Π′ such that

• ∆ = Π′(φ);
• for any Γ, □Π′(Γ) = Π(□Γ).

10.2 Algebraic semantics
As for the algebraic semantics, we used a slightly modified formalization of BI
algebras from the Iris Coq library [24, 25]. The original formulation BI algebras
in Iris also includes a persistence modality [26], which behaves quite differently
from an S4-like modality that we use in Section 9. To our knowledge, the proof
theory of this modality has not been studied and there is no sequent calculus
for this logic. This formalization contains a lot of useful lemmas and makes
heavy use of setoids, which allows us to easily formulate the model P(Bunch)
of predicates on bunches quotiented by bunch equivalence.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.bunch_decomp.html#fill_is_frml
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.bunch_decomp.html#bunch_decomp_ctx
https://co-dan.github.io/BI-cutelim/d26ff19/bunched.seqcalc_s4.html#bunch_decomp_box

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 33

Inductive bterm (V : Type) : Type :=
| Var (x : V)
| TComma (T1 T2 : bterm V)
| TSemic (T1 T2 : bterm V) .
Fixpoint term_fv (T : bterm V) : gset V :=

match T with
| Var x ⇒ {[x]}
| TComma T1 T2 ⇒ term_fv T1 ∪ term_fv T2
| TSemic T1 T2 ⇒ term_fv T1 ∪ term_fv T2
end .

Fixpoint linear_bterm
(T : bterm V) : Prop :=
match T with
| Var x ⇒ True
| TComma T1 T2
| TSemic T1 T2 ⇒
term_fv T1 ## term_fv T2 ∧
linear_bterm T1 ∧ linear_bterm T2

end .
Definition bterm_alg_act {PROP : bi} (T : bterm V) (Xs : V →
PROP) : PROP .
Instance bterm_fmap : FMap bterm .
(* Class FMap (F : Type → Type) := A → B → F A → F B *)
Definition bterm_gset_fold : bterm (gset V) → bterm V .

Fig. 3 Coq definitions of bunched terms.

We also use setoids extensively in other parts of the formalization. We found
it useful to declare the bunch equivalence ∆1 ≡ ∆2 as a rewritable relation
with relevant Proper typeclass instances. In addition to that, we make use
of various typeclasses from the std++ library [27], like LeftId and Comm, for
registering the unital and commutativity laws of bunch equivalence with the
Coq’s rewrite system. For example, this allows us to easily turn a statement
(∆1 ,∅m) ; ∆2 ∈ X to ∆2 ,∆2 ∈ X, for a closed set X ∈ C.

10.3 Bunched terms and structural rules
The sequent calculus (and, consequently, the algebra C) is parameterized by a
collection of analytic structural rules (as in Section 7). Recall that an analytic
structural rule is a tuple (T⃗ , T) of bunched terms, such that T is a linear
term representing the context in the conclusion, and the rules T⃗ represent the
contexts in the premises.

Bunched terms.
Let us first look at the API for bunched terms that we have developed.
Bunched terms bterm V are defined in Coq inductively and are parameterized
by the type V of variables. The definition of bterm V and its correspond-
ing API is given in Figure 3. The bterm_alg_act function interprets a

Springer Nature 2021 LATEX template

34 Semantic Cut Elimination for BI

Definition structural_rule := (list (bterm nat) ∗ bterm nat)%type .
Definition is_analytical (s : structural_rule) := linear_bterm (snd s) .
Definition rule_valid (s : structural_rule) (PROP : bi) : Prop :=

∀ (Xs : nat → PROP) ,
bterm_alg_act (snd s) Xs ⊢

∃ Ti ’ : {Ti : bterm nat | Ti ∈ fst s} , bterm_alg_act (proj1_sig Ti ’) Xs .

Fig. 4 Coq definitions of bunched terms.

bunched term T in a BI algebra PROP, given an interpretation Xs for all
the variables. The bterm_fmap typeclass instance allows us to write terms
like fmap (fun n ⇒ n + 1) (TComma (Var 0) (Var 1)) , which computes to
TComma (Var 1) (Var 2). The function term_fv returns a set2 of variables
used in a term. The predicate linear_bterm determines whether a term is
linear (i.e. every variable in the term occurs exactly once). In the definition we
use the predicate X ## Y stating that the sets X and Y are disjoint.

Finally, the function bterm_gset_fold converts a term with sets of variables
to a set of terms with variables, by exhausting different picks of variables from
each set. For example, it would turn a term ({X1, X2} , {X1}) ; {X2} into a
set

{(
(X1 ,X1) ; X2

)
,
(
(X2 ,X1) ; X2

)}
. This function will be used in the

formalization of analytic completion, and demonstrates the advantage of having
the syntax of terms parameterized by a type of variables.

Structural rules
The Coq definitions of (analytic) structural rules, and their validity in a
particular BI algebra, are given in Figure 4. As one can see, we represent a
structural rule as a pair (T⃗ , T0), where T⃗ is a list of bunched terms in the
premise of the structural rule, and T0 is the bunched term representing the
conclusion of the rule. For our purposes, we will mainly be using nat as a type
of variables for bunched terms. The proposition rule_valid describes when
a rule (T⃗ , T0) holds in an algebra PROP; the existential quantifier represents
disjunction over a set, and we use Coq’s dependent product types to accurately
describe the domain of the quantification.

The sequent calculus we define is parameterized by a collection of
structural_rule’s. In order to prove the invertibility of relevant rules (as
in Section 7), we need an auxiliary lemma, similar to those in Section 10.1,
relating bunch decomposition and linear bunched terms:

Lemma 49 (bterm_ctx_act_decomp). If T is a linear bunched term with
variables x1, . . . , xn, and T [∆⃗] = Π(φ) for some bunched context Π, then there
is a variable xj occurring in T , and a context Π′ such that

• ∆j = Π′(φ);

2We use the type gset A of finite sets from the std++ library. The name stands for “generic
sets”, meaning that gset A is generic in the type A of elements, under two conditions: the type
A should be countable and should have decidable equality. In the rest of the text we assume that
the type V of variables in bunched terms satisfies these conditions.

https://co-dan.github.io/BI-cutelim/d26ff19/bunched.bunch_decomp.html#bterm_ctx_act_decomp

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 35

• for any bunch Γ,

T [∆1, . . . ,∆j−1,Π
′(Γ),∆j+1, . . . ,∆n] = Π(Γ).

We demonstrate how to use that lemma for showing the invertibility of the
rule ∗L:

Proof (of Lemma 3) We proceed by induction on the proof height and inversion of
the derivation. There are many cases to consider, based on the structure of the
derivation, which we divide into several groups.

Right rules. Suppose that the last applied rule was a right rule. For some rules
(EmpR, TrueR, −∗R, →R, ∨R1, ∨R2) the process is relatively straightforward. For
example, if the last applied rule was

∆′(φ ∗ ψ) ; χ1 ⊢cf χ2

∆′(φ ∗ ψ) ⊢cf χ1 → χ2

then we apply the induction hypothesis to obtain a derivation ∆′(φ , ψ) ; χ1 ⊢cf χ2
from which we obtain ∆′(φ , ψ) ⊢cf χ1 → χ2.

For other right rules (∗R, ∧R) we need to reason additionally about contexts.
Suppose, for example, that the last applied rule was

∆1 ⊢cf χ1 ∆2 ⊢cf χ2

∆1 ,∆2 ⊢cf χ1 ∗ χ2
where ∆(φ ∗ ψ) = ∆1 ,∆2. Since ∆1 ,∆2 ⇝ ⟨∆(−) | φ ∗ ψ⟩, we know that there
exists ∆′(−) such that one of the two cases hold:

1. ∆1 ⇝ ⟨∆′ | φ ∗ ψ⟩ and ∆(−) = ∆′(−) ,∆2;
2. or ∆2 ⇝ ⟨∆′ | φ ∗ ψ⟩ and ∆(−) = ∆1 ,∆′(−).

In both of those cases we use the induction hypothesis on one of the subproofs.
Left rules. Suppose the last applied rule was ∗L:

Π(φ′ , ψ′) ⊢cf χ

Π(φ′ ∗ ψ′) ⊢cf χ

and Π(φ′ ∗ ψ′) = ∆(φ ∗ ψ). By Lemma 46 we can consider several cases. First of all,
if Π(−) = ∆(−) and φ′ ∗ ψ′ = φ ∗ ψ, then φ = φ′ and ψ = ψ′ and we get the result
that we want immediately from the assumption.

On the other hand, if φ ∗ ψ appears inside Π itself we have functions Π0,Π1 such
that

• Π(Λ) = Π0(Λ)(φ ∗ ψ) for any Λ;
• ∆(Λ) = Π1(Λ)(φ

′ ∗ ψ′) for any Λ;
• Π0(Λ)(Λ

′) = Π1(Λ
′)(Λ).

Then, since we have a proof of
Π0(φ

′ , ψ′)(φ ∗ ψ) = Π(φ′ , ψ′) ⊢cf χ,

we can apply the induction hypothesis and obtain a proof of
Π0(φ

′ , ψ′)(φ , ψ) ⊢cf χ.

Since Π0(φ
′ ,ψ′)(φ ,ψ) = Π1(φ ,ψ)(φ′ ,ψ′), we can apply ∗L to get a derivation of

∆(φ , ψ) = Π1(φ , ψ)(φ′ ∗ ψ′) ⊢cf χ.

The other left rules are handled similarly.
Structural rules. The rules ax and cut are not applicable. For the other structural

rules, we proceed the same as in the case of left rules, relying on Lemma 46. □

Springer Nature 2021 LATEX template

36 Semantic Cut Elimination for BI

10.4 Analyic completion
We finish this section by describing the formalization of the analytic completion
procedure from Section 8. For the rest of this section fix a structural rule (T⃗ , T).

Linearizing bunched terms.
Given a bunched term T we define it’s linearization as follows:

Fixpoint linearize_pre (T : bterm nat) (idx : nat)
: nat ∗ (gmap nat nat) ∗ (bterm nat) :=
match T with
| Var x ⇒ (idx + 1 , {[idx := x] } , Var idx)
| TComma T1 T2 ⇒

let ’ (idx1 , m1 , T1 ’) := linearize_pre T1 idx in
let ’ (idx2 , m2 , T2 ’) := linearize_pre T2 idx1 in
(idx2 , m1 ∪ m2 , TComma T1 ’ T2 ’)

| TSemic T1 T2 ⇒
let ’ (idx1 , m1 , T1 ’) := linearize_pre T1 idx in
let ’ (idx2 , m2 , T2 ’) := linearize_pre T2 idx1 in
(idx2 , m1 ∪ m2 , TSemic T1 ’ T2 ’)

end .
Definition linearize_bterm (T : bterm nat) : bterm nat

:= snd (linearize_pre T 0) .
Definition linearize_bterm_ren (T : bterm nat) : gmap nat nat

:= snd (fst (linearize_pre T 0)) .

The linearization procedure is defined recursively on the structure on T , replac-
ing each variable with a fresh name and keeping track of that action. The
main linearization function is parametrized by the starting index idx for fresh
variables, and it returns, in addition to the linearized term T ’ , 1) the updated
index idx ’ , which is used in recursive calls, and 2) a renaming mapping3 m.
Almost all the proofs about the linearization function will proceed by first gen-
eralizing the starting index for fresh variables from 0 to an arbitrary natural
number n, and then proceeding by induction on the structure of the term.

Transformation of premises and analytic completion.
Recall from Section 8, that we need to define a (computable) function
transform(Ti) for each premise Ti, satisfying the following condition:

T ′[X1, . . . , Xk] ∈ transform(Ti) ⇐⇒
∃σ. T ′[X1, . . . , Xk] = Ti

•[Xσ(1), . . . , Xσ(n)] ∧ ∀j. σ(j) ∈ r−1
T (rTi

(j))

In Coq, we define this function, as well as the analytic completion of the rule
as follows, where (Ts , T) is the representation of the structural rule in question:

3We use the type gmap of finite maps from natural numbers to natural numbers, from the std++
library. The notation {[idx := x]} stands for a singleton finite map sending idx to x. By
m1 ∪ m2 we mean the union of two finite maps.

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 37

Definition ren_inverse : gmap nat (gset nat) :=
map_preimage (linearize_bterm_ren T) .

Definition transform_premise (Tz : bterm nat) : gset (bterm nat) :=
let Tz_lin := linearize_bterm Tz in
let r_Tz := linearize_bterm_ren Tz in
let ren := λ j , ren_inverse ! ! ! (r_Tz ! ! ! j) in
bterm_gset_fold (fmap ren Tz_lin) .

Definition analytic_completion : structural_rule :=
(mjoin (map (elements ◦ transform_premise) Ts) , linearize_bterm T) .

The function ren_invserse is a finite map, corresponding to the inverse r−1
T

of the renaming function. We use the notation m ! ! ! i to denote the total
lookup function for the map m, returning a dummy element if the key i is not
present in the map.

The function transform_premise first computes a bunched term
fmap ren Tz_lin : bterm (gset nat), in which variables correspond to sets
of variables from the original term. On paper, we might write this as
Tz

•[r−1
T (rTz

(1)), . . . , r−1
T (rTz

(n))]. We then use the function bterm_gset_fold
to obtain a set of terms {Tz•[Y1, . . . , Yn] | ∀j. Yj ∈ r−1

T (rTz
(j))}.

Finally, analytic_completion puts it all together, by transforming every
premise into a list of premises (elements ◦ transform_premise), and then
“collapses” the results into one big list of premises (mjoin).

11 Related Work
There has been a long line of work on formalizing cut elimination and other
meta-theoretical properties of logics in proof assistants. Here, we mention a
few recent ones. Pfenning [28] formalized cut elimination for intuitionistic and
classical propositional logic in Elf, using only structural induction and avoiding
termination measures. Chaudhuri, Lima, and Reis [29] have formalized cut
elimination for various fragments of linear logic in Abella. Xavier, Olarte, Reis,
and Nigam [30] have formalized cut elimination and completeness of focusing
for first-order linear logic in Coq, along with some other meta-theoretical
properties. In [31], Dawson and Goré describe their framework for formalizing
sequent calculus with explicit structural rules in Isabelle/HOL. They apply
their framework for the provability logic GL and formalize the cut elimination
argument for it. Their framework was later ported Coq [32] and used to
formalize cut elimination for a modal logic Kt. Another proof of cut elimination
for GL was formalized in Coq [33]; the authors noticed during the formalization
process that the proof can be simplified in several parts.

Tews [34] used Coq to formalize Pattinson’s and Schröder’s proof [35] of
cut elimination for coalgebraic modal logics. During his formalization effort,
Tews has uncovered a number of fixable gaps in the proof. As the author puts
it themselves:

Springer Nature 2021 LATEX template

38 Semantic Cut Elimination for BI

A formalization of this extent does always uncover a number of typos and errors
in the formalized work. It is a clear sign for the quality and accurateness of the
pen-and-paper proofs of Pattinson and Schröder that I found only 4 errors beyond
the level of nitpicking.

The formalized proofs mentioned above are syntactic. A formalized seman-
tic proof of cut elimination for the (∀,→,⊥) fragment of intuitionistic FOL
was given by Herbelin and Lee [36], using Kripke models. The only similar for-
malization that we are aware is the formalization by Larchey-Wendling [37] of
the Okada’s semantic proof of cut elimination for linear logic [16, 17]. A similar
formalization of cut elimination for implicational relevance logic was used by
the author used part of a larger formalization [38]. In personal communication
Larchey-Wendling mentioned that he has adapted the aforementioned phase
semantics proof to the logic of Bunched Implications, but was not completely
satisfied with it.

After Okada’s proof, related methods for proving cut elimination were
discussed for various logics. For example, Belardinelli, Jipsen, and Ono [39] use
intermediate structures (Gentzen structures) to interpret sequent calculi and
prove cut elimination for various substructural variants of the Lambek calculus.
This method was generalized to handle non-associative logics (i.e. without the
exchange rule) [40]. Ciabattoni, Galatos, and Terui [21] prove semantic cut
elimination for a wide ride of hypersequent calculi for nonclassical logics.

Galatos and Jipsen [19] introduced the framework of residuated frames
which they use to prove cut elimination (and other related properties) for many
extensions of Lambek calculus with arbitrary structural rules. The authors
later extended their framework [18] to cover extensions of distributive Lambek
calculus and BI. 4

Our proof can be seen as a simplification of the Galatos and Jipsen’s method.
Instead of making heavy use of the residuated frames, our proof goes directly
through algebraic semantics. While this is a less general framework, it still
allows us to extend the proof to cover, e.g. modal extensions of BI, which were
not covered by the residuated frames framework. We conjecture that the algebra
we construct in Section 6 is isomorphic to the Galois algebra constructed in
[18, Section 4].

12 Conclusion and Future Work
In this paper we have presented a fully formalized semantic-based proof of cut
elimination for the logic of bunched implications. We show that this proof can
be extended to cover various extensions of BI, and demonstrated which parts
of the proof have to be modified, and which remain unchanged.

As for future work, we see several ways of going forward. Firstly, we can
look at extensions of BI. For example, we can probably extend the construction

4The residuated frames framework was used to derive other meta-theoretical properties, such as
the finite model property. Unfortunately, the finite model property proof in [18] does not hold.
The argument there relies on a version of the Curry’s lemma (limiting a number of contractions
that can occur in a given sequent in a proof search) which does not hold in BI (see [41]).

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 39

presented here to cover first-order/predicate BI. The algebra C is already
complete (has all the meets and joins), so it is suitable for interpreting quantifiers.
Unfortunately, formalizing this would require dealing with variable binders,
which we decided to forgo in this paper. It would also be natural to look at
extensions such as GBI [18], extensions of BI with various modalities that are
used in separation logic [26, 42], or the recently proposed polarized sequent
calculus for BI [43].

Secondly, it would be interesting to go from logic to type theory. The
algebra C is a subalgebra of predicates Bunch → Prop, where Prop is the type
of propositions. One can imagine it is possible to consider instead presheaves
Bunch → Set, and look for a categorification of C – a reflexive subcategory of the
category of presheaves, which is universal for cut-free provability. That might
give us some insight into the connections to the normalization-by-evaluation
method for type theories [44], which is usually based on the category of
presheaves.

Acknowledgments
The author would like to thank Jorge Pérez, Revantha Ramanayake, Niels van
der Weide, and Dominique Larchey-Wendling, for their insightful comments on
the earlier version of this article and for pointing me to some of the related work.
The author would also like to thank the anonymous reviewers for providing
their invaluable feedback.

This work has been supported by the Dutch Research Council (NWO)
under project No. 016.Vidi.189.046 (Unifying Correctness for Communicating
Software).

Statements and Declarations
Ethical approval.
Not applicable.

Competing interests.
None.

Authors’ contributions.
Not applicable.

Funding.
This work has been supported by the Dutch Research Council (NWO)
under project No. 016.Vidi.189.046 (Unifying Correctness for Communicating
Software).

Springer Nature 2021 LATEX template

40 Semantic Cut Elimination for BI

Availability of data and materials.
The full formalization of this paper available online at https://github.com/
co-dan/BI-cutelim.

References
[1] O’Hearn, P., Pym, D.: The Logic of Bunched Implications. The Bulletin

of Symbolic Logic 5(2), 215–244 (1999). https://doi.org/10.2307/421090

[2] Reynolds, J.C.: Separation logic: A logic for shared mutable data structures.
In: LICS, pp. 55–74. IEEE Computer Society, ??? (2002). https://doi.org/
10.1109/LICS.2002.1029817

[3] O’Hearn, P.: Separation logic. CACM 62(2), 86–95 (2019). https://doi.
org/10.1145/3211968

[4] Pym, D., O’Hearn, P., Yang, H.: Possible worlds and resources: The
semantics of BI. Theoretical Computer Science 315(1), 257–305 (2004).
https://doi.org/10.1016/j.tcs.2003.11.020

[5] Pym, D.: The Semantics and Proof Theory of the Logic of Bunched
Implications. Applied Logic Series. Springer Netherlands, ??? (2002). https:
//doi.org/10.1007/978-94-017-0091-7

[6] Arisaka, R., Qin, S.: LBI Cut Elimination Proof with BI-MultiCut. In:
2012 Sixth International Symposium on Theoretical Aspects of Software
Engineering, pp. 235–238 (2012). https://doi.org/10.1109/TASE.2012.30

[7] Borisavljević, M., Došen, K., Petrić, Z.: On permuting cut with contraction.
Mathematical Structures in Computer Science 10(2), 99–136 (2000). https:
//doi.org/10.1017/S0960129599003011

[8] Brotherston, J.: Bunched Logics Displayed. Studia Logica 100(6), 1223–
1254 (2012)

[9] Pinto, L., Uustalu, T.: Proof Search and Counter-Model Construc-
tion for Bi-intuitionistic Propositional Logic with Labelled Sequents.
In: Giese, M., Waaler, A. (eds.) Automated Reasoning with Analytic
Tableaux and Related Methods. Lecture Notes in Computer Science, pp.
295–309. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02716-1_22

[10] de Paiva, V., Braüner, T.: Cut-Elimination for Full Intuitionistic Linear
Logic (1996)

[11] Bierman, G.: A note on full intuitionistic linear logic. Annals of Pure
and Applied Logic 79(3), 281–287 (1996). https://doi.org/10.1016/

https://github.com/co-dan/BI-cutelim
https://github.com/co-dan/BI-cutelim
https://doi.org/10.2307/421090
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968
https://doi.org/10.1016/j.tcs.2003.11.020
https://doi.org/10.1007/978-94-017-0091-7
https://doi.org/10.1007/978-94-017-0091-7
https://doi.org/10.1109/TASE.2012.30
https://doi.org/10.1017/S0960129599003011
https://doi.org/10.1017/S0960129599003011
https://doi.org/10.1007/978-3-642-02716-1_22
https://doi.org/10.1007/978-3-642-02716-1_22
https://doi.org/10.1016/0168-0072(96)00004-8
https://doi.org/10.1016/0168-0072(96)00004-8

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 41

0168-0072(96)00004-8

[12] Brünnler, K., Straßburger, L.: Modular Sequent Systems for Modal Logic.
In: Giese, M., Waaler, A. (eds.) Automated Reasoning with Analytic
Tableaux and Related Methods. Lecture Notes in Computer Science, pp.
152–166. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02716-1_12

[13] Marin, S., Straßburger, L.: Label-free modular systems for classical and
intuitionistic modal logics. In: Advances in Modal Logic 10, Groningen,
Netherlands (2014)

[14] Sambin, G., Valentini, S.: The modal logic of provability. The sequential
approach. Journal of Philosophical Logic 11(3), 311–342 (1982). https:
//doi.org/10.1007/BF00293433

[15] Goré, R., Ramanayake, R.: Valentini’s cut-elimination for provability
logic resolved. The Review of Symbolic Logic 5(2), 212–238 (2012). https:
//doi.org/10.1017/S1755020311000323

[16] Okada, M.: Phase semantic cut-elimination and normalization proofs of
first- and higher-order linear logic. Theoretical Computer Science 227(1-2),
333–396 (1999). https://doi.org/10.1016/S0304-3975(99)00058-4

[17] Okada, M.: A uniform semantic proof for cut-elimination and completeness
of various first and higher order logics. Theoretical Compututer Science
281(1), 471–498 (2002). https://doi.org/10.1016/S0304-3975(02)00024-5

[18] Galatos, N., Jipsen, P.: Distributive residuated frames and generalized
bunched implication algebras. Algebra universalis 78(3), 303–336 (2017).
https://doi.org/10.1007/s00012-017-0456-x

[19] Galatos, N., Jipsen, P.: Residuated Frames with Applications to Decidabil-
ity. Transactions of the American Mathematical Society 365(3), 1219–1249
(2013)

[20] Everett, C.J.: Closure Operators and Galois Theory in Lattices. Trans-
actions of the American Mathematical Society 55(3), 514–525 (1944).
https://doi.org/10.2307/1990306

[21] Ciabattoni, A., Galatos, N., Terui, K.: From Axioms to Analytic Rules
in Nonclassical Logics. In: 2008 23rd Annual IEEE Symposium on Logic
in Computer Science, pp. 229–240 (2008). https://doi.org/10.1109/LICS.
2008.39

[22] Bierman, G., de Paiva, V.: On an Intuitionistic Modal Logic. Studia Logica
65(3), 383–416 (2000). https://doi.org/10.1023/A:1005291931660

https://doi.org/10.1016/0168-0072(96)00004-8
https://doi.org/10.1016/0168-0072(96)00004-8
https://doi.org/10.1007/978-3-642-02716-1_12
https://doi.org/10.1007/978-3-642-02716-1_12
https://doi.org/10.1007/BF00293433
https://doi.org/10.1007/BF00293433
https://doi.org/10.1017/S1755020311000323
https://doi.org/10.1017/S1755020311000323
https://doi.org/10.1016/S0304-3975(99)00058-4
https://doi.org/10.1016/S0304-3975(02)00024-5
https://doi.org/10.1007/s00012-017-0456-x
https://doi.org/10.2307/1990306
https://doi.org/10.1109/LICS.2008.39
https://doi.org/10.1109/LICS.2008.39
https://doi.org/10.1023/A:1005291931660

Springer Nature 2021 LATEX template

42 Semantic Cut Elimination for BI

[23] Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke
Semantics for Constructive S4 Modal Logic. In: Fribourg, L. (ed.) Computer
Science Logic. Lecture Notes in Computer Science, pp. 292–307. Springer,
Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0_21

[24] Iris team: The Iris Project website and Coq development. https://
iris-project.org/. Accessed: 2021-09-08 (2021)

[25] Krebbers, R., Jourdan, J., Jung, R., Tassarotti, J., Kaiser, J., Timany,
A., Charguéraud, A., Dreyer, D.: MoSeL: A general, extensible modal
framework for interactive proofs in separation logic. PACMPL 2(ICFP),
77–17730 (2018). https://doi.org/10.1145/3236772

[26] Bizjak, A., Birkedal, L.: On Models of Higher-Order Separation Logic.
Electronic Notes in Theoretical Computer Science 336, 57–78 (2018).
https://doi.org/10.1016/j.entcs.2018.03.016

[27] std++ developers: An extended “standard” library for Coq. https://gitlab.
mpi-sws.org/iris/stdpp/. Accessed: 2022-05-27 (2022)

[28] Pfenning, F.: Structural cut elimination: I. intuitionistic and classical logic.
Information and Computation 157(1-2), 84–141 (2000). https://doi.org/
10.1006/inco.1999.2832

[29] Chaudhuri, K., Lima, L., Reis, G.: Formalized Meta-Theory of Sequent
Calculi for Substructural Logics. Electronic Notes in Theoretical Computer
Science 332, 57–73 (2017). https://doi.org/10.1016/j.entcs.2017.04.005

[30] Xavier, B., Olarte, C., Reis, G., Nigam, V.: Mechanizing Focused Linear
Logic in Coq. Electronic Notes in Theoretical Computer Science 338,
219–236 (2018). https://doi.org/10.1016/j.entcs.2018.10.014

[31] Dawson, J.E., Goré, R.: Generic Methods for Formalising Sequent Calculi
Applied to Provability Logic. In: Fermüller, C.G., Voronkov, A. (eds.)
Logic for Programming, Artificial Intelligence, and Reasoning. Lecture
Notes in Computer Science, pp. 263–277. Springer, Berlin, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16242-8_19

[32] D’Abrera, C., Dawson, J., Goré, R.: A Formally Verified Cut-Elimination
Procedure for Linear Nested Sequents for Tense Logic. In: Das, A., Negri, S.
(eds.) Automated Reasoning with Analytic Tableaux and Related Methods.
Lecture Notes in Computer Science, pp. 281–298. Springer International
Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_17

[33] Goré, R., Ramanayake, R., Shillito, I.: Cut-Elimination for Provability
Logic by Terminating Proof-Search: Formalised and Deconstructed Using
Coq. In: Das, A., Negri, S. (eds.) Automated Reasoning with Analytic

https://doi.org/10.1007/3-540-44802-0_21
https://iris-project.org/
https://iris-project.org/
https://doi.org/10.1145/3236772
https://doi.org/10.1016/j.entcs.2018.03.016
https://gitlab.mpi-sws.org/iris/stdpp/
https://gitlab.mpi-sws.org/iris/stdpp/
https://doi.org/10.1006/inco.1999.2832
https://doi.org/10.1006/inco.1999.2832
https://doi.org/10.1016/j.entcs.2017.04.005
https://doi.org/10.1016/j.entcs.2018.10.014
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-030-86059-2_17

Springer Nature 2021 LATEX template

Semantic Cut Elimination for BI 43

Tableaux and Related Methods. Lecture Notes in Computer Science, pp.
299–313. Springer International Publishing, Cham (2021). https://doi.org/
10.1007/978-3-030-86059-2_18

[34] Tews, H.: Formalizing Cut Elimination of Coalgebraic Logics in Coq. In:
Galmiche, D., Larchey-Wendling, D. (eds.) Automated Reasoning with
Analytic Tableaux and Related Methods. Lecture Notes in Computer
Science, pp. 257–272. Springer, Berlin, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40537-2_22

[35] Pattinson, D., Schröder, L.: Cut elimination in coalgebraic logics. Infor-
mation and Computation 208(12), 1447–1468 (2010). https://doi.org/10.
1016/j.ic.2009.11.008

[36] Herbelin, H., Lee, G.: Forcing-Based Cut-Elimination for Gentzen-Style
Intuitionistic Sequent Calculus. In: Ono, H., Kanazawa, M., de Queiroz,
R. (eds.) Logic, Language, Information and Computation. Lecture Notes
in Computer Science, pp. 209–217. Springer, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02261-6_17

[37] Larchey-Wendling, D.: Semantic Cut-Elimination for ILL via relational
phase semantics. https://github.com/DmxLarchey/Coq-Phase-Semantics.
Accessed: 2021-09-08 (2021)

[38] Larchey-Wendling, D.: Constructive Decision via Redundancy-Free Proof-
Search. Journal of Automated Reasoning 64(7), 1197–1219 (2020). https:
//doi.org/10.1007/s10817-020-09555-y

[39] Belardinelli, F., Jipsen, P., Ono, H.: Algebraic Aspects of Cut Elimination.
Studia Logica 77(2), 209–240 (2004). https://doi.org/10.1023/B:STUD.
0000037127.15182.2a

[40] Galatos, N., Ono, H.: Cut elimination and strong separation for substruc-
tural logics: An algebraic approach. Annals of Pure and Applied Logic
161(9), 1097–1133 (2010). https://doi.org/10.1016/j.apal.2010.01.003

[41] Jipsen, P., Litak, T.: An Algebraic Glimpse at Bunched Implications and
Separation Logic. To appear in “Outstanding Contributions: Hiroakira
Ono on Residuated Lattices and Substructural Logics”. (2018)

[42] Dockins, R., Appel, A.W., Hobor, A.: Multimodal Separation Logic for
Reasoning About Operational Semantics. Electronic Notes in Theoretical
Computer Science 218, 5–20 (2008). https://doi.org/10.1016/j.entcs.2008.
10.002

[43] Gheorghiu, A., Marin, S.: Focused proof-search in the logic of bunched
implications. In: Kiefer, S., Tasson, C. (eds.) Foundations of Software

https://doi.org/10.1007/978-3-030-86059-2_18
https://doi.org/10.1007/978-3-030-86059-2_18
https://doi.org/10.1007/978-3-642-40537-2_22
https://doi.org/10.1007/978-3-642-40537-2_22
https://doi.org/10.1016/j.ic.2009.11.008
https://doi.org/10.1016/j.ic.2009.11.008
https://doi.org/10.1007/978-3-642-02261-6_17
https://github.com/DmxLarchey/Coq-Phase-Semantics
https://doi.org/10.1007/s10817-020-09555-y
https://doi.org/10.1007/s10817-020-09555-y
https://doi.org/10.1023/B:STUD.0000037127.15182.2a
https://doi.org/10.1023/B:STUD.0000037127.15182.2a
https://doi.org/10.1016/j.apal.2010.01.003
https://doi.org/10.1016/j.entcs.2008.10.002
https://doi.org/10.1016/j.entcs.2008.10.002

Springer Nature 2021 LATEX template

44 Semantic Cut Elimination for BI

Science and Computation Structures - 24th International Conference,
FOSSACS 2021. Lecture Notes in Computer Science, vol. 12650, pp. 247–
267. Springer, ??? (2021). https://doi.org/10.1007/978-3-030-71995-1_
13

[44] Altenkirch, T., Hofmann, M., Streicher, T.: Categorical reconstruction
of a reduction free normalization proof. In: Pitt, D., Rydeheard, D.E.,
Johnstone, P. (eds.) Category Theory and Computer Science. Lecture
Notes in Computer Science, pp. 182–199. Springer, Berlin, Heidelberg
(1995)

https://doi.org/10.1007/978-3-030-71995-1_13
https://doi.org/10.1007/978-3-030-71995-1_13

	1 Introduction
	Why formalize cut elimination?
	Semantic cut elimination.

	1.1 Contributions and Outline
	1.2 Formalization
	1.3 Publication History

	2 Semantic Cut Elimination
	3 Sequent Calculus for BI
	3.1 Cut-free Provability

	4 Algebraic Semantics for BI
	4.1 BI Algebras from Monoids
	BI algebra from the monoid of contexts.

	5 Moore Closures on BI Algebras
	5.1 BI Algebra Structure on Closed Sets
	A remark on (im)predicativity.

	6 Cut-elimination via a Syntactic Model
	6.1 Principal Closed Sets
	6.2 BI Structure
	6.3 Fundamental Property of C
	Overview.

	7 Extending the Logic: Analytic Structural Rules
	7.1 Analytic Structural Rules and Bunched Terms
	7.2 Interpretation of Structural Rules in C

	8 Analytic Completion
	8.1 Analytic completion procedure
	Linearizing the conclusion.
	Adjusting the premises.

	8.2 Correctness

	9 Extending the Logic: an S4 Modality
	Interpreting the modality.

	10 The Coq Formalization
	10.1 Sequent calculus and bunch decomposition
	10.2 Algebraic semantics
	10.3 Bunched terms and structural rules
	Bunched terms.
	Structural rules

	10.4 Analyic completion
	Linearizing bunched terms.
	Transformation of premises and analytic completion.

	11 Related Work
	12 Conclusion and Future Work
	Ethical approval.
	Competing interests.
	Authors' contributions.
	Funding.
	Availability of data and materials.

