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This Course: Propositions as Sessions

We shall explore the logical foundations of concurrent computation.

Plan:
1. Motivation (Jorge) - Multiplicative, Additive Linear Logic (MAILL) (Dan)

2. The concurrent interpretation of MAILL (Jorge)
3. Today: Cut-elimination and correctness for concurrent processes (Jorge)
4. Beyond linear resources: the !-modality and resource sharing (Dan)
5. An alternative view of resource sharing: Bunched Implications (Dan)
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The Two-Buyer Protocol
Recall the protocol between Alice, Bob, and Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.



Session Types for The Two-Buyer Protocol

Two independent protocols, with Alice “leading” the interactions:
1. A session type for Seller (in its interaction with Alice):

SSA = ?book; !quote; &

8<
:

buy : ?paym; ?address; !ok; end
cancel : ?thanks; !bye; end

2. A session type for Alice (in its interaction with Bob):

SAB = !cost; &

8<
:

share : ?address; !ok; end
close : !bye; end
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Example: A Two-Buyer Protocol

Correctness follows from the interplay of the following properties:

� Fidelity – implementations follow the intended protocol.
- Alice never ask Bob twice within the same conversation
- Alice doesn’t continue the transaction if Bob can’t contribute
- Alice chooses among the options provided by Seller

� Safety – they don’t feature communication errors.
� Deadlock-Freedom – they do not “get stuck” while running

the protocol.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)
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MAILL
A;B ::= 1 j A
B j A ( B j A & B j A�B

A ` A ; ` 1
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�1;�2 ` A
B


L
�;A;B ` C
�;A
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CUT
� ` A �0;A ` B
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�1;�2;A ( B ` C
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� ` A � ` B

� ` A & B

&Li

�;Ai ` C
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� ` A1 �A2

�L
�;A1 ` C �;A2 ` C

�;A1 �A2 ` C
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Propositions As Types

The sequential case (aka Curry-Howard correspondence, formulae-as-types,
proofs-as-programs...):

Intuitionistic logic propositions $ types describing data
Natural deduction derivations $ terms in the �-calculus

Proof normalization reductions $ �-reductions
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Propositions As Sessions

Today, the concurrent case:

Linear logic propositions $ types describing behavior (sessions)
Sequent calculus derivations $ processes in the �-calculus

Cut reductions $ communication between processes

We shall follow the correspondence between session types and intuitionistic
linear logic (aka �DILL, Caires & Pfenning 2010).
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Linear Logic: Sequent Calculus

The sequent
A1; : : : ;An ` B ;

is interpreted as A1 
 : : :
An ( B .

Structural rules:

A ` A
�1 ` A �2;A ` B

�1;�2 ` B
�1;A;B ;�2 ` C
�1;B ;A;�2 ` C

Notice: Each connective is “explained” in sequent calculus with a left rule, a right
rule, and the interactions with the cut rule.
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Linear Logic: Sequent Calculus

�1 ` A �2 ` B
�1;�2 ` A
B

�;A;B ` C
�;A
B ` C

�;A ` B
� ` A ( B

�1 ` A B ;�2 ` C
�1;A ( B ;�2 ` C

; ` 1
� ` C

�; 1 ` C
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Key Ideas

� We shall consider a language of processes (denoted P ;Q ; : : :) that interact
by synchronizing on names (denoted x ; y ; z ; : : :).

� Interpret the logical sequent

A1; � � � ; An ` C

as a typing judgment, under a suitable reading of propositions as sessions:

x1 : A1; � � � ; xn : An ` P :: z : C

Process P offers session C on channel z ...

... by relying on sessions A1, . . . , An on channels x1; : : : ; xn
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Interpreting LL Propositions as Session Types

!U ;S send value of type U , continue as S ??

U 
 S

?U ;S receive value of type U , continue as S ??

end terminate the session ??

Notice: A non-commutative reading of 
!
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Propositions as Session Types: A
B

We have some decisions to make:

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` ?? :: ?? : A
B

�; y : A; x : B ` R :: z : C
�; ?? : A
B ` ?? :: z : C
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Propositions as Session Types: A
B

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy) (x hyi:(P | Q)) :: x : A
B

Send y over x

Execute P and Q in parallel

Declare channel y as local, i.e., private

To use a ‘
’, receive a name on x
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Propositions as Session Types: A ( B

For A ( B , we have a symmetric situation:

�; y : A ` P :: z : B
� ` z (y):P :: z : A ( B

�1 ` P :: y : A x : B ;�2 ` Q :: z : C
�1; x : A ( B ;�2 ` (νy) (x hyi:(P | Q)) :: z : C

To offer a ‘(’, we implement a receiveTo use a ‘(’, we implement a send
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Propositions as Session Types: The Unit 1 and Axiom

More decisions to make:

; ` ?? :: x : 1
� ` Q :: z : C

�; ?? : 1 ` ?? :: z : C
x : A ` ?? :: y : A
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Propositions as Session Types: The Unit 1 and Axiom

; ` x hi :: x : 1
� ` Q :: z : C

�; x : 1 ` x ():Q :: z : C
x : A ` [y  x ] :: y : A

Close the channel x

Wait for the channel x to close

Forward all messages between x and y
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Propositions as Session Types: An Alternative for Unit 1

We have just seen an explicit interpretation of 1. There is also a so-called silent
interpretation:

; ` 0 :: x : 1
� ` Q :: z : C

�; x : 1 ` Q :: z : C

0 is the process that does nothing

No explicit action
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Interpreting LL Propositions as Session Types

end terminate the session 1

!U ;S send value of type U , continue as S U 
 S

?U ;S receive value of type U , continue as S U ( S

S1 � S2 select one between S1 (left) and S2 (right) idem

S1 & S2 offer the alternatives S1 (left) and S2 (right) idem

�fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn “idem”

&fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn “idem”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 21 / 44



Interpreting LL Propositions as Session Types

end terminate the session 1

!U ;S send value of type U , continue as S U 
 S

?U ;S receive value of type U , continue as S U ( S

S1 � S2 select one between S1 (left) and S2 (right) idem

S1 & S2 offer the alternatives S1 (left) and S2 (right) idem

�fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn “idem”

&fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn “idem”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 21 / 44



Interpreting LL Propositions as Session Types

end terminate the session 1

!U ;S send value of type U , continue as S U 
 S

?U ;S receive value of type U , continue as S U ( S

S1 � S2 select one between S1 (left) and S2 (right) idem

S1 & S2 offer the alternatives S1 (left) and S2 (right) idem

�fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn “idem”

&fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn “idem”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 21 / 44



Propositions as Session Types: Additive Conjunction

Binary operators:

� ` P :: x : A � ` Q :: x : A
� ` x .finl : P ;inr : Qg :: x : A & B

�; x : A ` Q :: z : C
�; x : A & B ` x / inl;Q :: z : C

�; x : B ` Q :: z : C
�; x : A & B ` x / inr;Q :: z : C

Notice: ‘/’ means sending a label and ‘.’ means receiving a label.
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Propositions as Session Types: Additive Conjunction

The generalization to n-ary operators:

� ` Pi :: x : Ai

� ` x .fl1 : P1; : : : ;ln : Png :: x : &fli : Aig1�i�n

�; x : Ai ` Q :: z : C
�; x : &fli : Aig ` x / li ;Q :: z : C
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Propositions as Session Types: Additive Conjunction

Let’s examine first at the binary version:

� ` P :: x : A � ` Q :: x : A
� ` x .finl : P ;inr : Qg :: x : A & B

�; x : A ` Q :: z : C
�; x : A & B ` x / inl;Q :: z : C

�; x : B ` Q :: z : C
�; x : A & B ` x / inr;Q :: z : C

Branch on x : proceed either as P or Q

Select either left or right session continuation

Branch on x : proceed as one of the Pi

Select exactly one of the session continuations
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Propositions as Session Types: Additive Disjunction

For A�B , we have a symmetric situation:

� ` P :: x : A
� ` x / inl;P :: x : A�B

� ` Q :: x : B
� ` x / inr;Q :: x : A�B

�; x : A ` P :: z : C �; x : B ` Q :: z : C
�; x : A�B ` x .finl : P ;inr : Qg :: z : C

To offer a ‘�’, we implement a selection

To use a ‘�’, we implement a branching
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The Process Language, Up to Here
A variant of the �-calculus (Milner, Parrow & Walker, 1992):

P ;Q ::= [y  x ] forwarder between sessions x and y
j (νy) (x hyi:(P | Q)) send y over x , then execute P and Q
j x (y):P receive y over x , then execute P
j x hi close session x
j x ():P wait-close session x , then execute P
j x / li ;P select label li along x , then execute P
j x .fl1 : P1; : : : ;ln : Png branch on x , offering labels l1; : : : ;ln

j 0 inaction (silent interpretation)

What are we missing?
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Propositions as Session Types: Cut

�1 ` P :: x : A �2; x : A ` Q :: z : C
�1;�2 ` ?? :: z : C

P can provide A along x

Q relies on x along A to provide z : C
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The Process Language, Now With Concurrency
P ;Q ::= [y  x ] forwarder between sessions x and y

j (νy) (x hyi:(P | Q)) send y over x , then execute P and Q
j x (y):P receive y over x , then execute P
j x hi close session x
j x ():P wait-close session x , then execute P
j x / li ;P select label li along x , then execute P
j x .fl1 : P1; : : : ;ln : Png branch on x , offering labels l1; : : : ;ln

j 0 inaction (silent interpretation)

j (νx )(P | Q) parallel composition of P and Q on x

� In (νy)P and x (y):P , name y is bound with scope P .
� We write Pfy=zg to denote the substitution of z for y in P .



Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn ).

� On the other hand, a process such as ; ` Q :: y : A is a closed system: it
has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.
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then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn ).
� On the other hand, a process such as ; ` Q :: y : A is a closed system: it

has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

x1 : A1; x2 : A2; � � � ; xn : An ` P :: y : A

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.
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closing systems. Example:

x2 : A2; � � � ; xn : An ` (νx1)(P | R1) :: y : A

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.
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Processes for The Two-Buyer Protocol
� Recall Bob’s involvement in the two-buyer protocol:

?cost;�

8<
:

share : !address; ?ok; end
close : ?bye; end

� Here’s a possible process implementation for Bob in our process language:

Bob = b(y):b / share; (νa)bhai:([a  a 0] | b(u):0)

(This is the silent interpretation!)

� Process Bob is well-typed, as the following judgment is provable:

a 0 : A ` Bob :: b : C ( �fshare : A
 (OK ( 1) ; close : 1g| {z }
bobProto

where, for simplicity, C = A = OK = 1.
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Processes for The Two-Buyer Protocol

� Let us now consider an implementation for Alice. She is involved in two
different sessions, on which she depends, so we expect a judgment:

b : bobProto; s : sellerProto ` Alice :: z : 1

� We can define the process Alice, which manages both sessions:

shbooki:s(q):bhqi:b .f
share : b(addr):s / buy; shpi:shaddri:bhoki:0
close : s / cancel; bhbyei:shexiti:0 g

� This way, the complete (closed) system would look as follows:

(νb)((νs)(Alice | Seller) | Bob)
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Proof Simplification and Process Semantics

� Up to here, we have seen how to interpret propositions as session types, and
how to extract processes from proofs.
� This is only half of the expected correspondence: We still need to see how

proof simplification corresponds to the semantics of processes.
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Proof Simplification and Process Semantics

Proof transformations have different consequences on processes:
� Principal cut reductions induce process reduction, denoted �!, a relation

that defines the behavior of a process on its own (i.e. synchronizations)
� Some proof transformations correspond to structural congruence, denoted
�, a relation that describes syntactic rearrangements for processes
� Commuting conversions do not have precise correspondences, but can be

explained via behavioral equivalences
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Principal Cut Reductions: Synchronization via 
 (1/4)

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy)x hyi:(P | Q) :: x : A
B

�3; y : A; x : B ` R :: z : C
�3; x : A
B ` x (y):R :: z : C

�1;�2;�3 ` (νx )
�
(νy)x hyi:(P | Q) | x (y):R

�
:: z : C

�!

�2 ` Q :: x : B
�1 ` P :: y : A �3; y : A; x : B ` R :: z : C

�1; x : B ;�3 ` (νy)(P | R) :: z : C

�1;�2;�3 ` (νx )
�
Q | (νy)(P | R)

�
:: z : C

This way, we have the following reduction on processes:

(νx )
�
(νy)x hyi:(P | Q) | x (y):R

�
�! (νx )

�
Q | (νy)(P | R)

�
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 (2/4)
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Principal Cut Reductions: Synchronization via 
 (3/4)
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�
�! (νx )

�
Q | (νy)(P | R)
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Principal Cut Reductions: Synchronization via 
 (4/4)

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy)x hyi:(P | Q) :: x : A
B

�3; y : A; x : B ` R :: z : C
�3; x : A
B ` x (y):R :: z : C

�1;�2;�3 ` (νx )
�
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�
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�
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�
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�
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Principal Cut Reductions: Synchronization via (
The case of ( is similar. We have the following:

�1; y : A ` R :: x : B
�1 ` x (y):R :: x : A ( B

�2 ` P :: y : A �3; x : B ` Q :: z : C
�2;�3; x : A ( B ` (νy)x hyi:(P | Q) :: z : C

�1;�2;�3 ` (νx )
�
x (y):R | (νy)x hyi:(P | Q)

�
:: z : C

which, omitting large bits of the derivation, can be simplified into

�1;�2;�3 ` (νx )((νy)(P | R) | Q) :: z : C

That is, we have the following reduction on processes:

(νx )
�
x (y):R | (νy)x hyi:(P | Q)

�
�! (νx )((νy)(P | R) | Q)
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Where is My Communication?

In our rules, the name (on x ) and the input parameter are the same (i.e. y).
In general, these names need not match and reduction involves a name
substitution and scope extrusion. In the case of (:

�1;�2;�3 ` (νx )
�
x (y):R | (νw)x hwi:(P | Q)

�
:: z : C

�!

�1;�2;�3 ` (νx )((νw)(P | Rfw=yg) | Q) :: z : C

R contains occurrences of y

Name w has been received by R

The scope of w has expanded!
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Process Reductions from Cut Reductions: Choice (1/3)
�1 ` P :: x : A �1 ` Q :: x : A

�1 ` x .finl : P ;inr : Qg :: x : A & B
�2; x : A ` R :: z : C

�2; x : A & B ` x / inl;R :: z : C

�1;�2 ` (νx )
�
x .finl : P ;inr : Qg | x / inl;R

�
:: z : C

�!

�1 ` P :: x : A �2; x : A ` R :: z : C

�1;�2 ` (νx )(P | R)

This way, we have the following reduction on processes:

(νx )
�
x .finl : P ;inr : Qg | x / inl;R

�
�! (νx )(P | R)



Process Reductions from Cut Reductions: Choice (2/3)
�1 ` P :: x : A �1 ` Q :: x : A

�1 ` x .finl : P ;inr : Qg :: x : A & B
�2; x : A ` R :: z : C

�2; x : A & B ` x / inl;R :: z : C

�1;�2 ` (νx )
�
x .finl : P ;inr : Qg | x / inl;R

�
:: z : C

�!

�1 ` P :: x : A �2; x : A ` R :: z : C

�1;�2 ` (νx )(P | R)

This way, we have the following reduction on processes:

(νx )
�
x .finl : P ;inr : Qg | x / inl;R

�
�! (νx )(P | R)



Process Reductions from Cut Reductions: Choice (3/3)
�1 ` P :: x : A �1 ` Q :: x : A

�1 ` x .finl : P ;inr : Qg :: x : A & B
�2; x : A ` R :: z : C

�2; x : A & B ` x / inl;R :: z : C

�1;�2 ` (νx )
�
x .finl : P ;inr : Qg | x / inl;R

�
:: z : C

�!

�1 ` P :: x : A �2; x : A ` R :: z : C
�1;�2 ` (νx )(P | R)

This way, we have the following reduction on processes:

(νx )
�
x .finl : P ;inr : Qg | x / inl;R

�
�! (νx )(P | R)



Semantics of Session-typed Processes

Summarizing, the relation �! on processes is defined via principal cut
reductions, as follows:

(νx )
�
(νy)x hyi:(P1 | P2) | x (z ):Q

�
�! (νx )

�
P2 | (νy)(P1 | Qfy=zg)

�

(νx )
�
x .fli : Pigi2I | x / li;R

�
�! (νx )

�
Pi | R

�

(νx )
�
x / li;R | x .fli : Pigi2I

�
�! (νx )

�
R | Pi

�

(νx )([x  y ] | P) �! Pfy=xg (y is not free in P )
P �! P 0 =) (νx )(P | Q) �! (νx )(P 0 | Q)

All the reductions remove a cut, possibly introducing new cuts in the process.
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Other Proof Transformations
� Structural congruence, noted �, concerns“expected” properties of

processes. Examples (omitting side conditions):

(νx )((νy)(P | Q) | R) � (νy)(P | (νx )(Q | R))

(νx )(P | (νy)(Q | R)) � (νy)(Q | (νx )(P | R))

� Commuting conversions induce “peculiar” equalities on processes,
denoted �cc. Examples (omitting side conditions):

x (u):y(w):P �cc y(w):x (u):P
x (u):(νw)yhwi:(P1 | P2) �cc (νw)yhwi:(x (u):P1 | P2)

x (u):(νy)(P1 | P2) �cc (νy)(x (u):P1 | P2)

�cc can be justfied via a (typed) bisimilarity on processes.
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Properties of �DILL

Theorem (Subject reduction)
If � ` P :: z : C and P �! Q then � ` Q :: z : C
SR ensures our (informal) expectations about session fidelity and communication
safety.

Theorem (Deadlock-freedom)
If � ` P :: z : C and P 6�! � then P is blocked on either z or a channel from �

Corollary
If ; ` P :: z : 1 and P 6�! � then P = z hi.
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More on Deadlock-Freedom / Progress
� Remarkably, the concurrent interpretation of LL leads to a type system that

avoids stuck processes.

� A paradigmatic example of a stuck process:

P = (νx )(νz )(x (y):(νw) z hwi:(P1 | P2)

| (νy)z (u):(x hyi:P3 | P4))

Note the circular dependency between the two processes in parallel.
� The following process does not have this dependency:

Q = (νx )(νz )(x (y):(νw) z hwi:(Q1 | Q2)

| (νy) x hyi:(z (u):Q3 | Q4))

Still, Q cannot be typed in the interpretation - can you see why?
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Taking Stock

Today:
� Concurrent interpretation of LL: statics and dynamics
� Left and right rules per connective - rely and guarantee interactive behaviors
� Cut reductions and process synchronizations
� A first look at correctness properties ensured by the logic-based type system
� More on the computational interpretation of proof transformations
� Deadlock-freedom and progress

Coming next:
� Beyond linear resources: the !-modality
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