
Propositions as Sessions
Logical Foundations of Concurrent Computation

Dan Frumin and Jorge A. Pérez
University of Groningen, The Netherlands

www.rug.nl/fse/fc
d.frumin | j.a.perez [[at]] rug.nl

ESSLLI 2024
(Part 2, last revised: July 31, 11h)

https://www.rug.nl/fse/fc

This Course: Propositions as Sessions

We shall explore the logical foundations of concurrent computation.

Plan:
1. Motivation (Jorge) - Multiplicative, Additive Linear Logic (MAILL) (Dan)

2. The concurrent interpretation of MAILL (Jorge)
3. Today: Cut-elimination and correctness for concurrent processes (Jorge)
4. Beyond linear resources: the !-modality and resource sharing (Dan)
5. An alternative view of resource sharing: Bunched Implications (Dan)

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 2 / 44

This Course: Propositions as Sessions

We shall explore the logical foundations of concurrent computation.

Plan:
1. Motivation (Jorge) - Multiplicative, Additive Linear Logic (MAILL) (Dan)
2. The concurrent interpretation of MAILL (Jorge)
3. Today: Cut-elimination and correctness for concurrent processes (Jorge)
4. Beyond linear resources: the !-modality and resource sharing (Dan)
5. An alternative view of resource sharing: Bunched Implications (Dan)

Your questions and feedback are warmly welcome!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 2 / 44

Outline
Preliminaries

Computational Interpretation of LL: Statics
Sequent Calculus
Output and Input
Unit and Axiom
Additives
Cut
Processes

Dynamics
Cut Reduction
Process Reduction
Properties

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 3 / 44

The Two-Buyer Protocol
Recall the protocol between Alice, Bob, and Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Session Types for The Two-Buyer Protocol

Two independent protocols, with Alice “leading” the interactions:
1. A session type for Seller (in its interaction with Alice):

SSA = ?book; !quote; &

8<
:

buy : ?paym; ?address; !ok; end
cancel : ?thanks; !bye; end

2. A session type for Alice (in its interaction with Bob):

SAB = !cost; &

8<
:

share : ?address; !ok; end
close : !bye; end

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 5 / 44

Session Types for The Two-Buyer Protocol

Two independent protocols, with Alice “leading” the interactions:
1. A session type for Seller (in its interaction with Alice):

SSA = ?book; !quote; &

8<
:

buy : ?paym; ?address; !ok; end
cancel : ?thanks; !bye; end

2. A session type for Alice (in its interaction with Bob):

SAB = !cost; &

8<
:

share : ?address; !ok; end
close : !bye; end

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 5 / 44

Example: A Two-Buyer Protocol

Correctness follows from the interplay of the following properties:

� Fidelity – implementations follow the intended protocol.
- Alice never ask Bob twice within the same conversation
- Alice doesn’t continue the transaction if Bob can’t contribute
- Alice chooses among the options provided by Seller

� Safety – they don’t feature communication errors.
� Deadlock-Freedom – they do not “get stuck” while running

the protocol.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)

Example: A Two-Buyer Protocol

Correctness follows from the interplay of the following properties:

� Fidelity – implementations follow the intended protocol.
� Safety – they don’t feature communication errors.

- Seller always returns an integer when Alice requests a quote

� Deadlock-Freedom – they do not “get stuck” while running
the protocol.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)

Example: A Two-Buyer Protocol

Correctness follows from the interplay of the following properties:

� Fidelity – implementations follow the intended protocol.
� Safety – they don’t feature communication errors.
� Deadlock-Freedom – they do not “get stuck” while running

the protocol.
- Alice eventually receives an answer from Bob on his

contribution.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)

Example: A Two-Buyer Protocol

Correctness follows from the interplay of the following properties:

� Fidelity – implementations follow the intended protocol.
� Safety – they don’t feature communication errors.
� Deadlock-Freedom – they do not “get stuck” while running

the protocol.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)

MAILL
A;B ::= 1 j A
B j A (B j A & B j A�B

A ` A ; ` 1

R
�1 ` A �2 ` B
�1;�2 ` A
B

L
�;A;B ` C
�;A
B ` C

CUT
� ` A �0;A ` B

�;�0 ` B

(R
�;A ` B

� ` A (B

(L
�1 ` A �2;B ` C
�1;�2;A (B ` C

&R
� ` A � ` B

� ` A & B

&Li

�;Ai ` C
�;A1 & A2 ` C

�Ri

� ` Ai

� ` A1 �A2

�L
�;A1 ` C �;A2 ` C

�;A1 �A2 ` C

Outline
Preliminaries

Computational Interpretation of LL: Statics
Sequent Calculus
Output and Input
Unit and Axiom
Additives
Cut
Processes

Dynamics
Cut Reduction
Process Reduction
Properties

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 8 / 44

Propositions As Types

The sequential case (aka Curry-Howard correspondence, formulae-as-types,
proofs-as-programs...):

Intuitionistic logic propositions $ types describing data
Natural deduction derivations $ terms in the �-calculus

Proof normalization reductions $ �-reductions

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 9 / 44

Propositions As Sessions

Today, the concurrent case:

Linear logic propositions $ types describing behavior (sessions)
Sequent calculus derivations $ processes in the �-calculus

Cut reductions $ communication between processes

We shall follow the correspondence between session types and intuitionistic
linear logic (aka �DILL, Caires & Pfenning 2010).

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 10 / 44

Propositions As Sessions

Today, the concurrent case:

Linear logic propositions $ types describing behavior (sessions)
Sequent calculus derivations $ processes in the �-calculus

Cut reductions $ communication between processes

We shall follow the correspondence between session types and intuitionistic
linear logic (aka �DILL, Caires & Pfenning 2010).

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 10 / 44

Linear Logic: Sequent Calculus

The sequent
A1; : : : ;An ` B ;

is interpreted as A1
 : : :
An (B .

Structural rules:

A ` A
�1 ` A �2;A ` B

�1;�2 ` B
�1;A;B ;�2 ` C
�1;B ;A;�2 ` C

Notice: Each connective is “explained” in sequent calculus with a left rule, a right
rule, and the interactions with the cut rule.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 11 / 44

Linear Logic: Sequent Calculus

The sequent
A1; : : : ;An ` B ;

is interpreted as A1
 : : :
An (B .

Structural rules:

A ` A
�1 ` A �2;A ` B

�1;�2 ` B
�1;A;B ;�2 ` C
�1;B ;A;�2 ` C

Notice: Each connective is “explained” in sequent calculus with a left rule, a right
rule, and the interactions with the cut rule.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 11 / 44

Linear Logic: Sequent Calculus

�1 ` A �2 ` B
�1;�2 ` A
B

�;A;B ` C
�;A
B ` C

�;A ` B
� ` A (B

�1 ` A B ;�2 ` C
�1;A (B ;�2 ` C

; ` 1
� ` C

�; 1 ` C

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 12 / 44

Key Ideas

� We shall consider a language of processes (denoted P ;Q ; : : :) that interact
by synchronizing on names (denoted x ; y ; z ; : : :).

� Interpret the logical sequent

A1; � � � ; An ` C

as a typing judgment, under a suitable reading of propositions as sessions:

x1 : A1; � � � ; xn : An ` P :: z : C

Process P offers session C on channel z ...

... by relying on sessions A1, . . . , An on channels x1; : : : ; xn

Key Ideas
� We shall consider a language of processes (denoted P ;Q ; : : :) that interact

by synchronizing on names (denoted x ; y ; z ; : : :).

� Processes can send/receive messages on names, using sequencing and
parallel composition. We shall gradually “extract” their syntax from proofs.

� Interpret the logical sequent

A1; � � � ; An ` C

as a typing judgment, under a suitable reading of propositions as sessions:

x1 : A1; � � � ; xn : An ` P :: z : C

Process P offers session C on channel z ...

... by relying on sessions A1, . . . , An on channels x1; : : : ; xn

Key Ideas

� Interpret the logical sequent

A1; � � � ; An ` C

as a typing judgment, under a suitable reading of propositions as sessions:

x1 : A1; � � � ; xn : An ` P :: z : C

Process P offers session C on channel z ...

... by relying on sessions A1, . . . , An on channels x1; : : : ; xn

Key Ideas

� Interpret the logical sequent

A1; � � � ; An ` C

as a typing judgment, under a suitable reading of propositions as sessions:

x1 : A1; � � � ; xn : An ` P :: z : C

Process P offers session C on channel z ...

... by relying on sessions A1, . . . , An on channels x1; : : : ; xn

Interpreting LL Propositions as Session Types

!U ;S send value of type U , continue as S ??

U
 S

?U ;S receive value of type U , continue as S ??

end terminate the session ??

Notice: A non-commutative reading of
!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 44

Interpreting LL Propositions as Session Types

!U ;S send value of type U , continue as S U
 S

?U ;S receive value of type U , continue as S ??

end terminate the session ??

Notice: A non-commutative reading of
!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 44

Interpreting LL Propositions as Session Types

!U ;S send value of type U , continue as S U
 S

?U ;S receive value of type U , continue as S U (S

end terminate the session ??

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 44

Interpreting LL Propositions as Session Types

!U ;S send value of type U , continue as S U
 S

?U ;S receive value of type U , continue as S U (S

end terminate the session 1

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 44

Propositions as Session Types: A
B

We have some decisions to make:

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` ?? :: ?? : A
B

�; y : A; x : B ` R :: z : C
�; ?? : A
B ` ?? :: z : C

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 15 / 44

Propositions as Session Types: A
B

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy) (x hyi:(P | Q)) :: x : A
B

Send y over x

Execute P and Q in parallel

Declare channel y as local, i.e., private

To use a ‘
’, receive a name on x

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 16 / 44

Propositions as Session Types: A
B

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy) (x hyi:(P | Q)) :: x : A
B

Send y over x

Execute P and Q in parallel

Declare channel y as local, i.e., private

To use a ‘
’, receive a name on x

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 16 / 44

Propositions as Session Types: A
B

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy) (x hyi:(P | Q)) :: x : A
B

Send y over x

Execute P and Q in parallel

Declare channel y as local, i.e., private

To use a ‘
’, receive a name on x

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 16 / 44

Propositions as Session Types: A
B

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy) (x hyi:(P | Q)) :: x : A
B

Send y over x

Execute P and Q in parallel

Declare channel y as local, i.e., private

To use a ‘
’, receive a name on x

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 16 / 44

Propositions as Session Types: A
B

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy) (x hyi:(P | Q)) :: x : A
B

�; y : A; x : B ` R :: z : C
�; x : A
B ` x (y):R :: z : C

Send y over x

Execute P and Q in parallel

Declare channel y as local, i.e., private

To use a ‘
’, receive a name on x

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 16 / 44

Propositions as Session Types: A (B

For A (B , we have a symmetric situation:

�; y : A ` P :: z : B
� ` z (y):P :: z : A (B

�1 ` P :: y : A x : B ;�2 ` Q :: z : C
�1; x : A (B ;�2 ` (νy) (x hyi:(P | Q)) :: z : C

To offer a ‘(’, we implement a receiveTo use a ‘(’, we implement a send

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 17 / 44

Propositions as Session Types: A (B

For A (B , we have a symmetric situation:

�; y : A ` P :: z : B
� ` z (y):P :: z : A (B

�1 ` P :: y : A x : B ;�2 ` Q :: z : C
�1; x : A (B ;�2 ` (νy) (x hyi:(P | Q)) :: z : C

To offer a ‘(’, we implement a receive

To use a ‘(’, we implement a send

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 17 / 44

Propositions as Session Types: A (B

For A (B , we have a symmetric situation:

�; y : A ` P :: z : B
� ` z (y):P :: z : A (B

�1 ` P :: y : A x : B ;�2 ` Q :: z : C
�1; x : A (B ;�2 ` (νy) (x hyi:(P | Q)) :: z : C

To offer a ‘(’, we implement a receiveTo use a ‘(’, we implement a send

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 17 / 44

Propositions as Session Types: The Unit 1 and Axiom

More decisions to make:

; ` ?? :: x : 1
� ` Q :: z : C

�; ?? : 1 ` ?? :: z : C
x : A ` ?? :: y : A

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 18 / 44

Propositions as Session Types: The Unit 1 and Axiom

; ` x hi :: x : 1
� ` Q :: z : C

�; x : 1 ` x ():Q :: z : C
x : A ` [y x] :: y : A

Close the channel x

Wait for the channel x to close

Forward all messages between x and y

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 19 / 44

Propositions as Session Types: The Unit 1 and Axiom

; ` x hi :: x : 1
� ` Q :: z : C

�; x : 1 ` x ():Q :: z : C
x : A ` [y x] :: y : A

Close the channel x

Wait for the channel x to close

Forward all messages between x and y

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 19 / 44

Propositions as Session Types: The Unit 1 and Axiom

; ` x hi :: x : 1
� ` Q :: z : C

�; x : 1 ` x ():Q :: z : C
x : A ` [y x] :: y : A

Close the channel x

Wait for the channel x to close

Forward all messages between x and y

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 19 / 44

Propositions as Session Types: The Unit 1 and Axiom

; ` x hi :: x : 1
� ` Q :: z : C

�; x : 1 ` x ():Q :: z : C
x : A ` [y x] :: y : A

Close the channel x

Wait for the channel x to close

Forward all messages between x and y

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 19 / 44

Propositions as Session Types: An Alternative for Unit 1

We have just seen an explicit interpretation of 1. There is also a so-called silent
interpretation:

; ` 0 :: x : 1
� ` Q :: z : C

�; x : 1 ` Q :: z : C

0 is the process that does nothing

No explicit action

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 20 / 44

Interpreting LL Propositions as Session Types

end terminate the session 1

!U ;S send value of type U , continue as S U
 S

?U ;S receive value of type U , continue as S U (S

S1 � S2 select one between S1 (left) and S2 (right) idem

S1 & S2 offer the alternatives S1 (left) and S2 (right) idem

�fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn “idem”

&fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn “idem”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 21 / 44

Interpreting LL Propositions as Session Types

end terminate the session 1

!U ;S send value of type U , continue as S U
 S

?U ;S receive value of type U , continue as S U (S

S1 � S2 select one between S1 (left) and S2 (right) idem

S1 & S2 offer the alternatives S1 (left) and S2 (right) idem

�fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn “idem”

&fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn “idem”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 21 / 44

Interpreting LL Propositions as Session Types

end terminate the session 1

!U ;S send value of type U , continue as S U
 S

?U ;S receive value of type U , continue as S U (S

S1 � S2 select one between S1 (left) and S2 (right) idem

S1 & S2 offer the alternatives S1 (left) and S2 (right) idem

�fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn “idem”

&fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn “idem”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 21 / 44

Propositions as Session Types: Additive Conjunction

Binary operators:

� ` P :: x : A � ` Q :: x : A
� ` x .finl : P ;inr : Qg :: x : A & B

�; x : A ` Q :: z : C
�; x : A & B ` x / inl;Q :: z : C

�; x : B ` Q :: z : C
�; x : A & B ` x / inr;Q :: z : C

Notice: ‘/’ means sending a label and ‘.’ means receiving a label.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 22 / 44

Propositions as Session Types: Additive Conjunction

The generalization to n-ary operators:

� ` Pi :: x : Ai

� ` x .fl1 : P1; : : : ;ln : Png :: x : &fli : Aig1�i�n

�; x : Ai ` Q :: z : C
�; x : &fli : Aig ` x / li ;Q :: z : C

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 22 / 44

Propositions as Session Types: Additive Conjunction

Let’s examine first at the binary version:

� ` P :: x : A � ` Q :: x : A
� ` x .finl : P ;inr : Qg :: x : A & B

�; x : A ` Q :: z : C
�; x : A & B ` x / inl;Q :: z : C

�; x : B ` Q :: z : C
�; x : A & B ` x / inr;Q :: z : C

Branch on x : proceed either as P or Q

Select either left or right session continuation

Branch on x : proceed as one of the Pi

Select exactly one of the session continuations

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 23 / 44

Propositions as Session Types: Additive Conjunction

Let’s examine first at the binary version:

� ` P :: x : A � ` Q :: x : A
� ` x .finl : P ;inr : Qg :: x : A & B

�; x : A ` Q :: z : C
�; x : A & B ` x / inl;Q :: z : C

�; x : B ` Q :: z : C
�; x : A & B ` x / inr;Q :: z : C

Branch on x : proceed either as P or Q

Select either left or right session continuation

Branch on x : proceed as one of the Pi

Select exactly one of the session continuations

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 23 / 44

Propositions as Session Types: Additive Conjunction

Let’s look now at the generalized version:

� ` Pi :: x : Ai

� ` x .fl1 : P1; : : : ;ln : Png :: x : &fli : Aig1�i�n

�; x : Ai ` Q :: z : C
�; x : &fli : Aig ` x / li ;Q :: z : C

Branch on x : proceed either as P or Q

Select either left or right session continuation

Branch on x : proceed as one of the Pi

Select exactly one of the session continuations

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 23 / 44

Propositions as Session Types: Additive Conjunction

Let’s look now at the generalized version:

� ` Pi :: x : Ai

� ` x .fl1 : P1; : : : ;ln : Png :: x : &fli : Aig1�i�n

�; x : Ai ` Q :: z : C
�; x : &fli : Aig ` x / li ;Q :: z : C

Branch on x : proceed either as P or Q

Select either left or right session continuation

Branch on x : proceed as one of the Pi

Select exactly one of the session continuations
Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 23 / 44

Propositions as Session Types: Additive Disjunction

For A�B , we have a symmetric situation:

� ` P :: x : A
� ` x / inl;P :: x : A�B

� ` Q :: x : B
� ` x / inr;Q :: x : A�B

�; x : A ` P :: z : C �; x : B ` Q :: z : C
�; x : A�B ` x .finl : P ;inr : Qg :: z : C

To offer a ‘�’, we implement a selection

To use a ‘�’, we implement a branching

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 24 / 44

Propositions as Session Types: Additive Disjunction

For A�B , we have a symmetric situation:

� ` P :: x : A
� ` x / inl;P :: x : A�B

� ` Q :: x : B
� ` x / inr;Q :: x : A�B

�; x : A ` P :: z : C �; x : B ` Q :: z : C
�; x : A�B ` x .finl : P ;inr : Qg :: z : C

To offer a ‘�’, we implement a selection

To use a ‘�’, we implement a branching

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 24 / 44

Propositions as Session Types: Additive Disjunction

For A�B , we have a symmetric situation:

� ` P :: x : A
� ` x / inl;P :: x : A�B

� ` Q :: x : B
� ` x / inr;Q :: x : A�B

�; x : A ` P :: z : C �; x : B ` Q :: z : C
�; x : A�B ` x .finl : P ;inr : Qg :: z : C

To offer a ‘�’, we implement a selection

To use a ‘�’, we implement a branching

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 24 / 44

The Process Language, Up to Here
A variant of the �-calculus (Milner, Parrow & Walker, 1992):

P ;Q ::= [y x] forwarder between sessions x and y
j (νy) (x hyi:(P | Q)) send y over x , then execute P and Q
j x (y):P receive y over x , then execute P
j x hi close session x
j x ():P wait-close session x , then execute P
j x / li ;P select label li along x , then execute P
j x .fl1 : P1; : : : ;ln : Png branch on x , offering labels l1; : : : ;ln

j 0 inaction (silent interpretation)

What are we missing?

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 25 / 44

Propositions as Session Types: Cut

�1 ` P :: x : A �2; x : A ` Q :: z : C
�1;�2 ` ?? :: z : C

P can provide A along x

Q relies on x along A to provide z : C

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 26 / 44

Propositions as Session Types: Cut

�1 ` P :: x : A �2; x : A ` Q :: z : C
�1;�2 ` ?? :: z : C

P can provide A along x

Q relies on x along A to provide z : C

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 26 / 44

Propositions as Session Types: Cut

�1 ` P :: x : A �2; x : A ` Q :: z : C
�1;�2 ` (νx)(P | Q) :: z : C

Declare channel x local to P and Q

Execute P and Q in parallel

P can provide A along x

Q relies on x along A to provide z : C

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 27 / 44

Propositions as Session Types: Cut

�1 ` P :: x : A �2; x : A ` Q :: z : C
�1;�2 ` (νx)(P | Q) :: z : C

Declare channel x local to P and Q

Execute P and Q in parallel

P can provide A along x

Q relies on x along A to provide z : C

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 27 / 44

Propositions as Session Types: Cut

�1 ` P :: x : A �2; x : A ` Q :: z : C
�1;�2 ` (νx)(P | Q) :: z : C

Declare channel x local to P and Q

Execute P and Q in parallel

P can provide A along x

Q relies on x along A to provide z : C

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 27 / 44

The Process Language, Now With Concurrency
P ;Q ::= [y x] forwarder between sessions x and y

j (νy) (x hyi:(P | Q)) send y over x , then execute P and Q
j x (y):P receive y over x , then execute P
j x hi close session x
j x ():P wait-close session x , then execute P
j x / li ;P select label li along x , then execute P
j x .fl1 : P1; : : : ;ln : Png branch on x , offering labels l1; : : : ;ln

j 0 inaction (silent interpretation)

j (νx)(P | Q) parallel composition of P and Q on x

� In (νy)P and x (y):P , name y is bound with scope P .
� We write Pfy=zg to denote the substitution of z for y in P .

Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn).

� On the other hand, a process such as ; ` Q :: y : A is a closed system: it
has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 29 / 44

Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn).
� On the other hand, a process such as ; ` Q :: y : A is a closed system: it

has only one visible “interface”, namely y .

� The interpretation of cut as typed composition gives an immediate recipe for
closing systems. Example:

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 29 / 44

Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn).
� On the other hand, a process such as ; ` Q :: y : A is a closed system: it

has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 29 / 44

Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn).
� On the other hand, a process such as ; ` Q :: y : A is a closed system: it

has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

x1 : A1; x2 : A2; � � � ; xn : An ` P :: y : A

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 29 / 44

Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn).
� On the other hand, a process such as ; ` Q :: y : A is a closed system: it

has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

x2 : A2; � � � ; xn : An ` (νx1)(P | R1) :: y : A

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 29 / 44

Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn).
� On the other hand, a process such as ; ` Q :: y : A is a closed system: it

has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

x3 : A3; � � � ; xn : An ` (νx2)((νx1)(P | R1) | R2) :: y : A

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 29 / 44

Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn).
� On the other hand, a process such as ; ` Q :: y : A is a closed system: it

has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

; ` (νxn)(� � � (νx2)((νx1)(P | R1) | R2) � � � | Rn) :: y : A

where processes Ri offer Ai on xi .

� The distinction between open and closed is key in the theory of processes in
general, and in the meta-theory of the interpretation in particular.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 29 / 44

Open and Closed Systems
� Generally speaking, if we have a process P with judgment

x1 : A1; � � � ; xn : An ` P :: y : A

then we can say P is an open system: it is ready to be composed with other
processes (via “interfaces” x1; : : : ; xn).
� On the other hand, a process such as ; ` Q :: y : A is a closed system: it

has only one visible “interface”, namely y .
� The interpretation of cut as typed composition gives an immediate recipe for

closing systems. Example:

; ` (νxn)(� � � (νx2)((νx1)(P | R1) | R2) � � � | Rn) :: y : A

where processes Ri offer Ai on xi .
� The distinction between open and closed is key in the theory of processes in

general, and in the meta-theory of the interpretation in particular.
Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 29 / 44

Processes for The Two-Buyer Protocol
� Recall Bob’s involvement in the two-buyer protocol:

?cost;�

8<
:

share : !address; ?ok; end
close : ?bye; end

� Here’s a possible process implementation for Bob in our process language:

Bob = b(y):b / share; (νa)bhai:([a a 0] | b(u):0)

(This is the silent interpretation!)

� Process Bob is well-typed, as the following judgment is provable:

a 0 : A ` Bob :: b : C (�fshare : A
 (OK (1) ; close : 1g| {z }
bobProto

where, for simplicity, C = A = OK = 1.

Processes for The Two-Buyer Protocol
� Recall Bob’s involvement in the two-buyer protocol:

?cost;�

8<
:

share : !address; ?ok; end
close : ?bye; end

� Here’s a possible process implementation for Bob in our process language:

Bob = b(y):b / share; (νa)bhai:([a a 0] | b(u):0)

(This is the silent interpretation!)
� Process Bob is well-typed, as the following judgment is provable:

a 0 : A ` Bob :: b : C (�fshare : A
 (OK (1) ; close : 1g| {z }
bobProto

where, for simplicity, C = A = OK = 1.

Processes for The Two-Buyer Protocol

� Let us now consider an implementation for Alice. She is involved in two
different sessions, on which she depends, so we expect a judgment:

b : bobProto; s : sellerProto ` Alice :: z : 1

� We can define the process Alice, which manages both sessions:

shbooki:s(q):bhqi:b .f
share : b(addr):s / buy; shpi:shaddri:bhoki:0
close : s / cancel; bhbyei:shexiti:0 g

� This way, the complete (closed) system would look as follows:

(νb)((νs)(Alice | Seller) | Bob)

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 31 / 44

Outline
Preliminaries

Computational Interpretation of LL: Statics
Sequent Calculus
Output and Input
Unit and Axiom
Additives
Cut
Processes

Dynamics
Cut Reduction
Process Reduction
Properties

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 32 / 44

Proof Simplification and Process Semantics

� Up to here, we have seen how to interpret propositions as session types, and
how to extract processes from proofs.
� This is only half of the expected correspondence: We still need to see how

proof simplification corresponds to the semantics of processes.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 33 / 44

Proof Simplification and Process Semantics

Proof transformations have different consequences on processes:
� Principal cut reductions induce process reduction, denoted �!, a relation

that defines the behavior of a process on its own (i.e. synchronizations)
� Some proof transformations correspond to structural congruence, denoted
�, a relation that describes syntactic rearrangements for processes
� Commuting conversions do not have precise correspondences, but can be

explained via behavioral equivalences

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 34 / 44

Principal Cut Reductions: Synchronization via
 (1/4)

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy)x hyi:(P | Q) :: x : A
B

�3; y : A; x : B ` R :: z : C
�3; x : A
B ` x (y):R :: z : C

�1;�2;�3 ` (νx)
�
(νy)x hyi:(P | Q) | x (y):R

�
:: z : C

�!

�2 ` Q :: x : B
�1 ` P :: y : A �3; y : A; x : B ` R :: z : C

�1; x : B ;�3 ` (νy)(P | R) :: z : C

�1;�2;�3 ` (νx)
�
Q | (νy)(P | R)

�
:: z : C

This way, we have the following reduction on processes:

(νx)
�
(νy)x hyi:(P | Q) | x (y):R

�
�! (νx)

�
Q | (νy)(P | R)

�

Principal Cut Reductions: Synchronization via
 (2/4)

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy)x hyi:(P | Q) :: x : A
B

�3; y : A; x : B ` R :: z : C
�3; x : A
B ` x (y):R :: z : C

�1;�2;�3 ` (νx)
�
(νy)x hyi:(P | Q) | x (y):R

�
:: z : C

�!

�2 ` Q :: x : B
�1 ` P :: y : A �3; y : A; x : B ` R :: z : C

�1; x : B ;�3 ` (νy)(P | R) :: z : C

�1;�2;�3 ` (νx)
�
Q | (νy)(P | R)

�
:: z : C

This way, we have the following reduction on processes:

(νx)
�
(νy)x hyi:(P | Q) | x (y):R

�
�! (νx)

�
Q | (νy)(P | R)

�

Principal Cut Reductions: Synchronization via
 (3/4)

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy)x hyi:(P | Q) :: x : A
B

�3; y : A; x : B ` R :: z : C
�3; x : A
B ` x (y):R :: z : C

�1;�2;�3 ` (νx)
�
(νy)x hyi:(P | Q) | x (y):R

�
:: z : C

�!

�2 ` Q :: x : B

�1 ` P :: y : A �3; y : A; x : B ` R :: z : C
�1; x : B ;�3 ` (νy)(P | R) :: z : C

�1;�2;�3 ` (νx)
�
Q | (νy)(P | R)

�
:: z : C

This way, we have the following reduction on processes:

(νx)
�
(νy)x hyi:(P | Q) | x (y):R

�
�! (νx)

�
Q | (νy)(P | R)

�

Principal Cut Reductions: Synchronization via
 (4/4)

�1 ` P :: y : A �2 ` Q :: x : B
�1;�2 ` (νy)x hyi:(P | Q) :: x : A
B

�3; y : A; x : B ` R :: z : C
�3; x : A
B ` x (y):R :: z : C

�1;�2;�3 ` (νx)
�
(νy)x hyi:(P | Q) | x (y):R

�
:: z : C

�!

�2 ` Q :: x : B
�1 ` P :: y : A �3; y : A; x : B ` R :: z : C

�1; x : B ;�3 ` (νy)(P | R) :: z : C

�1;�2;�3 ` (νx)
�
Q | (νy)(P | R)

�
:: z : C

This way, we have the following reduction on processes:

(νx)
�
(νy)x hyi:(P | Q) | x (y):R

�
�! (νx)

�
Q | (νy)(P | R)

�

Principal Cut Reductions: Synchronization via (
The case of (is similar. We have the following:

�1; y : A ` R :: x : B
�1 ` x (y):R :: x : A (B

�2 ` P :: y : A �3; x : B ` Q :: z : C
�2;�3; x : A (B ` (νy)x hyi:(P | Q) :: z : C

�1;�2;�3 ` (νx)
�
x (y):R | (νy)x hyi:(P | Q)

�
:: z : C

which, omitting large bits of the derivation, can be simplified into

�1;�2;�3 ` (νx)((νy)(P | R) | Q) :: z : C

That is, we have the following reduction on processes:

(νx)
�
x (y):R | (νy)x hyi:(P | Q)

�
�! (νx)((νy)(P | R) | Q)

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 36 / 44

Where is My Communication?

In our rules, the name (on x) and the input parameter are the same (i.e. y).
In general, these names need not match and reduction involves a name
substitution and scope extrusion. In the case of (:

�1;�2;�3 ` (νx)
�
x (y):R | (νw)x hwi:(P | Q)

�
:: z : C

�!

�1;�2;�3 ` (νx)((νw)(P | Rfw=yg) | Q) :: z : C

R contains occurrences of y

Name w has been received by R

The scope of w has expanded!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 37 / 44

Where is My Communication?

In our rules, the name (on x) and the input parameter are the same (i.e. y).
In general, these names need not match and reduction involves a name
substitution and scope extrusion. In the case of (:

�1;�2;�3 ` (νx)
�
x (y):R | (νw)x hwi:(P | Q)

�
:: z : C

�!

�1;�2;�3 ` (νx)((νw)(P | Rfw=yg) | Q) :: z : C

R contains occurrences of y

Name w has been received by R

The scope of w has expanded!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 37 / 44

Where is My Communication?

In our rules, the name (on x) and the input parameter are the same (i.e. y).
In general, these names need not match and reduction involves a name
substitution and scope extrusion. In the case of (:

�1;�2;�3 ` (νx)
�
x (y):R | (νw)x hwi:(P | Q)

�
:: z : C

�!

�1;�2;�3 ` (νx)((νw)(P | Rfw=yg) | Q) :: z : C

R contains occurrences of y

Name w has been received by R

The scope of w has expanded!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 37 / 44

Where is My Communication?

In our rules, the name (on x) and the input parameter are the same (i.e. y).
In general, these names need not match and reduction involves a name
substitution and scope extrusion. In the case of (:

�1;�2;�3 ` (νx)
�
x (y):R | (νw)x hwi:(P | Q)

�
:: z : C

�!

�1;�2;�3 ` (νx)((νw)(P | Rfw=yg) | Q) :: z : C

R contains occurrences of y

Name w has been received by R

The scope of w has expanded!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 37 / 44

Process Reductions from Cut Reductions: Choice (1/3)
�1 ` P :: x : A �1 ` Q :: x : A

�1 ` x .finl : P ;inr : Qg :: x : A & B
�2; x : A ` R :: z : C

�2; x : A & B ` x / inl;R :: z : C

�1;�2 ` (νx)
�
x .finl : P ;inr : Qg | x / inl;R

�
:: z : C

�!

�1 ` P :: x : A �2; x : A ` R :: z : C

�1;�2 ` (νx)(P | R)

This way, we have the following reduction on processes:

(νx)
�
x .finl : P ;inr : Qg | x / inl;R

�
�! (νx)(P | R)

Process Reductions from Cut Reductions: Choice (2/3)
�1 ` P :: x : A �1 ` Q :: x : A

�1 ` x .finl : P ;inr : Qg :: x : A & B
�2; x : A ` R :: z : C

�2; x : A & B ` x / inl;R :: z : C

�1;�2 ` (νx)
�
x .finl : P ;inr : Qg | x / inl;R

�
:: z : C

�!

�1 ` P :: x : A �2; x : A ` R :: z : C

�1;�2 ` (νx)(P | R)

This way, we have the following reduction on processes:

(νx)
�
x .finl : P ;inr : Qg | x / inl;R

�
�! (νx)(P | R)

Process Reductions from Cut Reductions: Choice (3/3)
�1 ` P :: x : A �1 ` Q :: x : A

�1 ` x .finl : P ;inr : Qg :: x : A & B
�2; x : A ` R :: z : C

�2; x : A & B ` x / inl;R :: z : C

�1;�2 ` (νx)
�
x .finl : P ;inr : Qg | x / inl;R

�
:: z : C

�!

�1 ` P :: x : A �2; x : A ` R :: z : C
�1;�2 ` (νx)(P | R)

This way, we have the following reduction on processes:

(νx)
�
x .finl : P ;inr : Qg | x / inl;R

�
�! (νx)(P | R)

Semantics of Session-typed Processes

Summarizing, the relation �! on processes is defined via principal cut
reductions, as follows:

(νx)
�
(νy)x hyi:(P1 | P2) | x (z):Q

�
�! (νx)

�
P2 | (νy)(P1 | Qfy=zg)

�

(νx)
�
x .fli : Pigi2I | x / li;R

�
�! (νx)

�
Pi | R

�

(νx)
�
x / li;R | x .fli : Pigi2I

�
�! (νx)

�
R | Pi

�

(νx)([x y] | P) �! Pfy=xg (y is not free in P)
P �! P 0 =) (νx)(P | Q) �! (νx)(P 0 | Q)

All the reductions remove a cut, possibly introducing new cuts in the process.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 39 / 44

Other Proof Transformations
� Structural congruence, noted �, concerns“expected” properties of

processes. Examples (omitting side conditions):

(νx)((νy)(P | Q) | R) � (νy)(P | (νx)(Q | R))

(νx)(P | (νy)(Q | R)) � (νy)(Q | (νx)(P | R))

� Commuting conversions induce “peculiar” equalities on processes,
denoted �cc. Examples (omitting side conditions):

x (u):y(w):P �cc y(w):x (u):P
x (u):(νw)yhwi:(P1 | P2) �cc (νw)yhwi:(x (u):P1 | P2)

x (u):(νy)(P1 | P2) �cc (νy)(x (u):P1 | P2)

�cc can be justfied via a (typed) bisimilarity on processes.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 40 / 44

Other Proof Transformations
� Structural congruence, noted �, concerns“expected” properties of

processes. Examples (omitting side conditions):

(νx)((νy)(P | Q) | R) � (νy)(P | (νx)(Q | R))

(νx)(P | (νy)(Q | R)) � (νy)(Q | (νx)(P | R))

� Commuting conversions induce “peculiar” equalities on processes,
denoted �cc. Examples (omitting side conditions):

x (u):y(w):P �cc y(w):x (u):P
x (u):(νw)yhwi:(P1 | P2) �cc (νw)yhwi:(x (u):P1 | P2)

x (u):(νy)(P1 | P2) �cc (νy)(x (u):P1 | P2)

�cc can be justfied via a (typed) bisimilarity on processes.
Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 40 / 44

Properties of �DILL

Theorem (Subject reduction)
If � ` P :: z : C and P �! Q then � ` Q :: z : C
SR ensures our (informal) expectations about session fidelity and communication
safety.

Theorem (Deadlock-freedom)
If � ` P :: z : C and P 6�! � then P is blocked on either z or a channel from �

Corollary
If ; ` P :: z : 1 and P 6�! � then P = z hi.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 41 / 44

Properties of �DILL

Theorem (Subject reduction)
If � ` P :: z : C and P �! Q then � ` Q :: z : C
SR ensures our (informal) expectations about session fidelity and communication
safety.

Theorem (Deadlock-freedom)
If � ` P :: z : C and P 6�! � then P is blocked on either z or a channel from �

Corollary
If ; ` P :: z : 1 and P 6�! � then P = z hi.

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 41 / 44

More on Deadlock-Freedom / Progress
� Remarkably, the concurrent interpretation of LL leads to a type system that

avoids stuck processes.

� A paradigmatic example of a stuck process:

P = (νx)(νz)(x (y):(νw) z hwi:(P1 | P2)

| (νy)z (u):(x hyi:P3 | P4))

Note the circular dependency between the two processes in parallel.
� The following process does not have this dependency:

Q = (νx)(νz)(x (y):(νw) z hwi:(Q1 | Q2)

| (νy) x hyi:(z (u):Q3 | Q4))

Still, Q cannot be typed in the interpretation - can you see why?

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 42 / 44

More on Deadlock-Freedom / Progress
� Remarkably, the concurrent interpretation of LL leads to a type system that

avoids stuck processes.
� A paradigmatic example of a stuck process:

P = (νx)(νz)(x (y):(νw) z hwi:(P1 | P2)

| (νy)z (u):(x hyi:P3 | P4))

Note the circular dependency between the two processes in parallel.

� The following process does not have this dependency:

Q = (νx)(νz)(x (y):(νw) z hwi:(Q1 | Q2)

| (νy) x hyi:(z (u):Q3 | Q4))

Still, Q cannot be typed in the interpretation - can you see why?

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 42 / 44

More on Deadlock-Freedom / Progress
� Remarkably, the concurrent interpretation of LL leads to a type system that

avoids stuck processes.
� A paradigmatic example of a stuck process:

P = (νx)(νz)(x (y):(νw) z hwi:(P1 | P2)

| (νy)z (u):(x hyi:P3 | P4))

Note the circular dependency between the two processes in parallel.
� The following process does not have this dependency:

Q = (νx)(νz)(x (y):(νw) z hwi:(Q1 | Q2)

| (νy) x hyi:(z (u):Q3 | Q4))

Still, Q cannot be typed in the interpretation - can you see why?

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 42 / 44

Taking Stock

Today:
� Concurrent interpretation of LL: statics and dynamics
� Left and right rules per connective - rely and guarantee interactive behaviors
� Cut reductions and process synchronizations
� A first look at correctness properties ensured by the logic-based type system
� More on the computational interpretation of proof transformations
� Deadlock-freedom and progress

Coming next:
� Beyond linear resources: the !-modality

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 43 / 44

Propositions as Sessions
Logical Foundations of Concurrent Computation

Dan Frumin and Jorge A. Pérez
University of Groningen, The Netherlands

www.rug.nl/fse/fc
d.frumin | j.a.perez [[at]] rug.nl

ESSLLI 2024
(Part 2, last revised: July 31, 11h)

https://www.rug.nl/fse/fc

	Preliminaries
	Computational Interpretation of LL: Statics
	Sequent Calculus
	Judgements
	Output and Input
	Unit and Axiom
	An Alternative for Unit
	Additives
	Cut
	Processes

	Dynamics
	Cut Reduction
	Process Reduction
	Properties

