
Propositions as Sessions
Logical Foundations of Concurrent Computation

Dan Frumin and Jorge A. Pérez
University of Groningen, The Netherlands

www.rug.nl/fse/fc
d.frumin | j.a.perez [[at]] rug.nl

ESSLLI 2024
(Part 1, v1.1)

https://www.rug.nl/fse/fc


About Us

Dan

▶ Assistant Professor, Fundamental
Computing Group

▶ Research Interests:
Semantics of programming
languages, program verification,
and concurrent separation logics

Jorge

▶ Associate Professor and Leader,
Fundamental Computing Group

▶ Research Interests:
Models and semantics of
concurrency, type systems,
relative expressiveness

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 2 / 20



This Course: Propositions as Sessions

This course concerns the logical foundations of concurrent computation.
▶ You may have heard about ‘propositions’, but what do we mean by

‘sessions’?
▶ In a nutshell, a session is a convenient way of structuring a series of related

interactions between communicating programs.
▶ A disciplined of these structures is key to ensure program correctness.

Not only: they have elegant logical foundations!



This Course: Propositions as Sessions

Plan:
1. Motivation (Jorge) - Multiplicative Linear Logic (MLL) (Dan)
2. The concurrent interpretation of MALL (Jorge)
3. Cut-elimination and correctness for concurrent processes (Jorge)
4. Beyond linear resources: the !-modality and resource sharing (Dan)
5. An alternative view of resource sharing: Bunched Implications (Dan)

Your questions and feedback are warmly welcome!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 4 / 20



Outline

Motivation
Program Correctness
Example: Two-Buyer Protocol
Session Types
Syntax

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 5 / 20



When is a Program Correct?

Sequential Programs

“Programs produce outputs that
are consistent with their input”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 6 / 20



Concurrent Programs?



Message-Passing Concurrent Programs?

▶ Software components (services)
distributed across networks

▶ Coordination takes place by
sending and receiving messages

▶ Compatible message exchanges
are crucial for system correctness

▶ A single faulty exchange can
cause system-wide bugs



Message-Passing Concurrent Programs

▶ Software components (services)
distributed across networks

▶ Coordination takes place by
sending and receiving messages

▶ Compatible message exchanges
are crucial for system correctness

▶ A single faulty exchange can
cause system-wide bugs



Message-Passing Concurrent Programs

▶ Software components (services)
distributed across networks

▶ Coordination takes place by
sending and receiving messages

▶ Compatible message exchanges
are crucial for system correctness

▶ A single faulty exchange can
cause system-wide bugs



Message-Passing Concurrent Programs

▶ Software components (services)
distributed across networks

▶ Coordination takes place by
sending and receiving messages

▶ Compatible message exchanges
are crucial for system correctness

▶ A single faulty exchange can
cause system-wide bugs



Message-Passing Concurrent Programs

▶ Software components (services)
distributed across networks

▶ Coordination takes place by
sending and receiving messages

▶ Compatible message exchanges
are crucial for system correctness

▶ A single faulty exchange can
cause system-wide bugs

An (imperfect) analogy:



When is a Program Correct?

Sequential Programs

“Programs produce outputs that
are consistent with their input”

Concurrent Programs

“Programs always
respect their intended protocols”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 8 / 20



When is a Program Correct?

Sequential Programs

“Programs produce outputs that
are consistent with their input”

Concurrent Programs

“Programs always
respect their intended protocols”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 8 / 20



When is a Program Correct?

Sequential Programs

“Programs produce outputs that
are consistent with their input”

Concurrent Programs

“Programs always
respect their intended protocols”

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 8 / 20



Example: A Two-Buyer Protocol
Alice and Bob cooperate in buying a book from Seller

:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Note: The structure and sequentiality of messaging matters!



Example: A Two-Buyer Protocol
Alice and Bob cooperate in buying a book from Seller :

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Note: The structure and sequentiality of messaging matters!



Example: A Two-Buyer Protocol
Alice and Bob cooperate in buying a book from Seller :

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Note: The structure and sequentiality of messaging matters!



Example: A Two-Buyer Protocol
Alice and Bob cooperate in buying a book from Seller :

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Note: The structure and sequentiality of messaging matters!



Example: A Two-Buyer Protocol
Alice and Bob cooperate in buying a book from Seller :

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Note: The structure and sequentiality of messaging matters!



Example: A Two-Buyer Protocol
Alice and Bob cooperate in buying a book from Seller :

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Note: The structure and sequentiality of messaging matters!



Example: A Two-Buyer Protocol
Alice and Bob cooperate in buying a book from Seller :

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Note: The structure and sequentiality of messaging matters!



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

� Fidelity – they follow the intended protocol.
- Alice never ask Bob twice within the same conversation
- Alice doesn’t continue the transaction if Bob can’t contribute
- Alice chooses among the options provided by Seller

� Safety – they don’t feature communication errors.
� Deadlock-Freedom – they do not “get stuck” while running

the protocol.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

� Fidelity – they follow the intended protocol.
� Safety – they don’t feature communication errors.

- Seller always returns an integer when Alice requests a quote

� Deadlock-Freedom – they do not “get stuck” while running
the protocol.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

� Fidelity – they follow the intended protocol.
� Safety – they don’t feature communication errors.
� Deadlock-Freedom – they do not “get stuck” while running

the protocol.
- Alice eventually receives an answer from Bob on his

contribution.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

� Fidelity – they follow the intended protocol.
� Safety – they don’t feature communication errors.
� Deadlock-Freedom – they do not “get stuck” while running

the protocol.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)



Example: A Two-Buyer Protocol
Desiderata for the implementations of Alice, Bob, and Seller:

� Fidelity – they follow the intended protocol.
� Safety – they don’t feature communication errors.
� Deadlock-Freedom – they do not “get stuck” while running

the protocol.

� Termination – they do not engage in infinite behavior (that
may prevent them from completing the protocol)

Correctness
▶ A non-trivial notion, which follows from the interplay of these properties.
▶ Hard to enforce, especially when actions are “scattered around” in

programs.
! Sessions specify a protocol’s structure, enabling program verification.

A session stipulates what and when should be exchanged (along a channel)



Type Systems
� Can detect bugs before programs are run
� Attached to many programming languages
� Implement a specific notion of correctness

A program is either correct or incorrect

Sequential Languages

� Data type systems classify values in a program
� Examples: Integers, strings of characters

Concurrent Languages

� Behavioral type systems classify protocols in a program
� Example: “first send username, then receive true/false, finally close”
� A typical bug: sending messages in the wrong order

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 11 / 20



Type Systems
� Can detect bugs before programs are run
� Attached to many programming languages
� Implement a specific notion of correctness

A program is either correct or incorrect

Sequential Languages

� Data type systems classify values in a program
� Examples: Integers, strings of characters

Concurrent Languages

� Behavioral type systems classify protocols in a program
� Example: “first send username, then receive true/false, finally close”
� A typical bug: sending messages in the wrong order

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 11 / 20



Type Systems
� Can detect bugs before programs are run
� Attached to many programming languages
� Implement a specific notion of correctness

A program is either correct or incorrect

Sequential Languages

� Data type systems classify values in a program
� Examples: Integers, strings of characters

Concurrent Languages

� Behavioral type systems classify protocols in a program
� Example: “first send username, then receive true/false, finally close”
� A typical bug: sending messages in the wrong order

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 11 / 20



How to Design Type Systems? Logic to the Rescue!

▶

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 12 / 20



How to Design Type Systems? Logic to the Rescue!

A landmark result in programming language theory:
▶ Propositions as types (Curry, 1935; Howard, 1969)

Propositions in Intuitionistic Logic $ Types
Proofs $ Sequential programs

Proof simplification $ Program evaluation

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 12 / 20



How to Design Type Systems? Logic to the Rescue!

▶ Propositions as types (Curry, 1935; Howard, 1969)
Propositions in Intuitionistic Logic $ Types

Proofs $ Sequential programs
Proof simplification $ Program evaluation

▶ What about concurrent programs? A resource-oriented view!

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 12 / 20



How to Design Type Systems? Logic to the Rescue!

▶ Propositions as sessions (this course!)
Propositions in Linear Logic (LL) $ Session types

Proofs in LL $ Interacting processes
Cut elimination in LL $ process communication

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 12 / 20



Protocols as Session Types

Session types uniformly describe protocols in terms
of
� communication actions (send and receive)
� choices (offers and selections)
� sequential composition
� recursion

Session protocols are attached to interaction devices:
� communication channels in programs (think Go and Rust)
� TCP-IP sockets
� � � �

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 13 / 20



Protocols as Session Types

Session types uniformly describe protocols in terms
of
� communication actions (send and receive)
� choices (offers and selections)
� sequential composition
� recursion

Session protocols are attached to interaction devices:
� communication channels in programs (think Go and Rust)
� TCP-IP sockets
� � � �

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 13 / 20



Protocols as Session Types
A formal syntax for protocols:

S ::= !U ;S send value of type U , continue as S

j ?U ;S receive value of type U , continue as S

j &fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn

j �fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn

j �t :S j t recursion

j end terminated protocol

Notice:
� Sequential communication patterns (no built-in concurrency)
� U stands for basic values (e.g. int) but also other sessions S

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 20



Protocols as Session Types
A formal syntax for protocols:

S ::= !U ;S send value of type U , continue as S

j ?U ;S receive value of type U , continue as S

j &fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn

j �fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn

j �t :S j t recursion

j end terminated protocol

Notice:
� Sequential communication patterns (no built-in concurrency)
� U stands for basic values (e.g. int) but also other sessions S

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 20



Protocols as Session Types
A formal syntax for protocols:

S ::= !U ;S send value of type U , continue as S

j ?U ;S receive value of type U , continue as S

j &fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn

j �fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn

j �t :S j t recursion

j end terminated protocol

Notice:
� Sequential communication patterns (no built-in concurrency)
� U stands for basic values (e.g. int) but also other sessions S

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 20



Protocols as Session Types
A formal syntax for protocols:

S ::= !U ;S send value of type U , continue as S

j ?U ;S receive value of type U , continue as S

j &fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn

j �fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn

j �t :S j t recursion

j end terminated protocol

Notice:
� Sequential communication patterns (no built-in concurrency)
� U stands for basic values (e.g. int) but also other sessions S

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 20



Protocols as Session Types
A formal syntax for protocols:

S ::= !U ;S send value of type U , continue as S

j ?U ;S receive value of type U , continue as S

j &fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn

j �fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn

j �t :S j t recursion

j end terminated protocol

Notice:
� Sequential communication patterns (no built-in concurrency)
� U stands for basic values (e.g. int) but also other sessions S

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 20



Protocols as Session Types
A formal syntax for protocols:

S ::= !U ;S send value of type U , continue as S

j ?U ;S receive value of type U , continue as S

j &fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn

j �fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn

j �t :S j t recursion

j end terminated protocol

Notice:
� Sequential communication patterns (no built-in concurrency)
� U stands for basic values (e.g. int) but also other sessions S

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 20



Protocols as Session Types
A formal syntax for protocols:

S ::= !U ;S send value of type U , continue as S

j ?U ;S receive value of type U , continue as S

j &fl 1 : S1; � � � ; l n : Sng offer the alternatives S1; : : : ;Sn

j �fl 1 : S1; � � � ; l n : Sng select one between S1; : : : ;Sn

j �t :S j t recursion

j end terminated protocol

Notice:
� Sequential communication patterns (no built-in concurrency)
� U stands for basic values (e.g. int) but also other sessions S

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 14 / 20



Example: A Two-Buyer Protocol
Recall the protocol between Alice, Bob, and Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the
book.

3. Alice uses the answer from Bob (yes/no) to interact with
Seller, either:

a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and
forwards it to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.



Example: A Two-Buyer Protocol

Two independent protocols, with Alice “leading” the interactions:
1. A session type for Seller (in its interaction with Alice):

SSA = ?book; !quote; &

8<
:

buy : ?paym; ?address; !ok; end
cancel : ?thanks; !bye; end

2. A session type for Alice (in its interaction with Bob):

SAB = !cost; &

8<
:

share : ?address; !ok; end
close : !bye; end

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 16 / 20



Example: A Two-Buyer Protocol

Two independent protocols, with Alice “leading” the interactions:
1. A session type for Seller (in its interaction with Alice):

SSA = ?book; !quote; &

8<
:

buy : ?paym; ?address; !ok; end
cancel : ?thanks; !bye; end

2. A session type for Alice (in its interaction with Bob):

SAB = !cost; &

8<
:

share : ?address; !ok; end
close : !bye; end

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 16 / 20



Example: A Two-Buyer Protocol

Implementations for Alice, Bob, and Seller should be compatible.
� Duality relates session types with opposite behaviors.
� Intuitively, the dual of sending is receiving (and vice versa).
� Similarly, branching is the dual of selection (and vice versa)

The dual of S is written S .



Example: A Two-Buyer Protocol

Example:
� Recall that SAB describes Alice’s viewpoint in her interaction with Bob:

SAB = !cost; &

8<
:

share : ?address; !ok; end
close : !bye; end

� Given this, Bob’s implementation should conform to SAB, the dual of SAB:

SAB = ?cost;�

8<
:

share : !address; ?ok; end
close : ?bye; end

� Also, Alice’s implementation should conform to both SSA and SAB.



Example: A Two-Buyer Protocol

Example:
� Recall that SAB describes Alice’s viewpoint in her interaction with Bob:

SAB = !cost; &

8<
:

share : ?address; !ok; end
close : !bye; end

� Given this, Bob’s implementation should conform to SAB, the dual of SAB:

SAB = ?cost;�

8<
:

share : !address; ?ok; end
close : ?bye; end

� Also, Alice’s implementation should conform to both SSA and SAB.



Session Type Duality, Formally

Given a (finite) session type S , its dual type S is inductively defined as follows:

!U ;S = ?U ;S

?U ;S = !U ;S

&fli : Sigi2I = �fli : Sigi2I

�fli : Sigi2I = &fli : Sigi2I

end = end

Notice:
� Duality for recursive session types is defined coinductively

(the dual of �t :S is not �t :S )

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 19 / 20



Taking Stock

Up to here:
� Correctness for communicating programs
� Sessions as protocol specifications
� A formal syntax for session types
� Example: A two-buyer protocol
� The notion of duality for session types

Coming next:
� Linear logic, in its intuitionistic variant

Frumin & Pérez (Univ. of Groningen) Propositions as Sessions 20 / 20


	Motivation
	Program Correctness
	Example: Two-Buyer Protocol
	Session Types
	Syntax


